The imprinted genes of primate embryonic stem cells (ESCs) often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs), SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs.
View Article and Find Full Text PDFTo question the possible implication of an alteration of the DNA methylation of imprinted genes in normal development failure observed following fertilization in ART centers, it has been necessary to develop a reproducible and highly efficient method to perform analysis at the one cell level. We have thus developed a very efficient protocol for methylation studies on individual oocytes or cleavage-stage embryos. All the different steps were optimized, from DNA extraction, to limit DNA degradation and give a high success rate of bisulfite converted DNA, to amplification of the bisulfite modified DNA.
View Article and Find Full Text PDFNot much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation.
View Article and Find Full Text PDFAs a result of advances in medical treatment, almost 80% of children who are diagnosed with cancer survive long-term. The adverse consequences of cancer treatments include impaired puberty and fertility. In prepubertal girls, the only therapeutic option is the cryopreservation of an ovary.
View Article and Find Full Text PDFSummary To evaluate the integrity of genomic imprinting in embryos that failed to develop normally following intracytoplasmic sperm injection (ICSI), we analysed the methylation profile of H19 and KCNQ1OT1 imprinting control regions, H19DMR and KvDMR1 respectively, in high-grade blastocysts and in embryos that exhibited developmental anomalies. Significant hypomethylation of KvDMR1 was specifically observed in 5/5 atypical blastocysts graded BC, which probably reflected the vulnerability of the imprint in the inner cell mass during the methylation remodelling phase in the early embryo. In addition, KvDMR1 was hypermethylated in 2/5 CC graded atypical blastocysts and in 2/8 embryos that exhibited developmental delay.
View Article and Find Full Text PDFART is suspected to generate increased imprinting errors in the lineage. Following an intra cytoplasmic sperm injection (ICSI) procedure, a certain number of embryos fail to develop normally and imprinting disorders may be associated to the developmental failure. To evaluate this hypothesis, we analysed the methylation profile of H19DMR, a paternally imprinting control region, in high-graded blastocysts, in embryos showing developmental anomalies, in the matching sperm and in oocytes of the concerned couples when they were available.
View Article and Find Full Text PDFObjective: To evaluate the integrity of genomic imprinting in oocytes vitrified at the germinal vesicle (GV) stage and in vitro matured (IVM) after thawing.
Design: Clinical research and application.
Setting: University-based fertility center.
The use of round spermatids that are fully active at the transcriptional level to create zygotes (i.e. round spermatid injection; ROSI) raises the question regarding the downregulation of all specific genes that are transcribed from the paternal genome at fertilization.
View Article and Find Full Text PDFImprinting is an epigenetic modification that is reprogrammed in the germ line and leads to the monoallelic expression of some genes. Imprinting involves DNA methylation. Maternal imprint is reset during oocyte growth and maturation.
View Article and Find Full Text PDFThe high-affinity monoclonal anti-estradiol antibody 9D3 presents a specificity defect towards estradiol-3-sulphate and 3-glucuronide conjugates incompatible with use in direct immunoassays. The corresponding single-chain variable fragment (scFv), cloned and produced in E. coli, exhibited a 10-fold lower affinity for estradiol (K(a)=1.
View Article and Find Full Text PDF