Publications by authors named "Thien-Duc Tran"

Background: Alterations in intracellular Na and Ca have been observed in patients with Duchenne muscular dystrophy (DMD) and in animal models of DMD, and inhibition of Na-H exchanger 1 (NHE1) by rimeporide has previously demonstrated cardioprotective effects in animal models of myocardial ischemia and heart failure. Since heart failure is becoming a predominant cause of death in DMD patients, this study aimed to demonstrate a cardioprotective effect of chronic administration of rimeporide in a canine model of DMD.

Methods: Golden retriever muscular dystrophy (GRMD) dogs were randomized to orally receive rimeporide (10 mg/kg, twice a day) or placebo from 2 months to 1 year of age.

View Article and Find Full Text PDF

The transient receptor potential (TRP) family of ion channels comprises nonselective cation channels that respond to a wide range of chemical and thermal stimuli. TRPM8, a member of the melastatin subfamily, is activated by cold temperatures (<28 °C), and antagonists of this channel have the potential to treat cold induced allodynia and hyperalgesia. However, TRPM8 has also been implicated in mammalian thermoregulation and antagonists have the potential to induce hypothermia in patients.

View Article and Find Full Text PDF

In ongoing studies towards novel hepatitis C virus (HCV) therapeutics, inhibitors of nonstructural protein 5A (NS5A) were evaluated. Specifically, starting from previously reported lead compounds, peripheral substitution patterns of a series of biaryl-linked pyrrolidine NS5A replication complex inhibitors were probed and structure-activity relationships were elucidated. Using molecular modelling and a supercritical fluid chromatographic (SFC) technique, intramolecular H-bonding and peripheral functional group topology were evaluated as key determinants of activity and membrane permeability.

View Article and Find Full Text PDF

Nonstructural protein 5A (NS5A) represents a novel target for the treatment of hepatitis C virus (HCV). Daclatasvir, recently reported by Bristol-Myers-Squibb, is a potent NS5A inhibitor currently under investigation in phase 3 clinical trials. While the performance of daclatasvir has been impressive, the emergence of resistance could prove problematic and as such, improved analogues are being sought.

View Article and Find Full Text PDF

Several non-benzimidazole containing inhibitors of respiratory syncytial virus are described. Core template modification, analysis of antiviral activity, physicochemistry and optimisation of properties led to the thiazole-imidazole 13, that showed a good potency and pharmacokinetic profile in the rat.

View Article and Find Full Text PDF

Aldehyde oxidase (AO) is a molybdenum-containing enzyme distributed throughout the animal kingdom and capable of metabolising a wide range of aldehydes and N-heterocyclic compounds. Although metabolism by this enzyme in man is recognised to have significant clinical impact where human AO activity was not predicted by screening in preclinical species, there is very little reported literature offering real examples where drug discoverers have successfully designed away from AO oxidation. This article reports on some strategies adopted in the Pfizer TLR7 agonist programme to successfully switch off AO metabolism that was seen principally in the rat.

View Article and Find Full Text PDF

Unlabelled: Small molecule fluorometric boron dipyrromethene probes were developed to bind hepatitis C virus-encoded NS5A protein and aid subcellular distribution studies. These molecules did not co-locate with NS5A, therefore alternative 'silent' azide reporters were used to obtain a more relevant picture of their distribution. Following pre-incubation with replicon cells, click chemistry was used to append a fluorophore to the azide that confirmed the co-localisation of the small molecule with the NS5A protein, thus providing greater insight into the antiviral mode of action of this chemotype.

View Article and Find Full Text PDF

The discovery of a series of highly potent and novel TLR7 agonist interferon inducers is described. Structure-activity relationships are presented, along with pharmacokinetic studies of a lead molecule from this series of N9-pyridylmethyl-8-oxo-3-deazapurine analogues. A rationale for the very high potency observed is offered.

View Article and Find Full Text PDF

The current standard of care for hepatitis C virus (HCV)-infected patients consists of lengthy treatment with interferon and ribavirin. To increase the effectiveness of HCV therapy, future regimens will incorporate multiple direct-acting antiviral (DAA) drugs. Recently, the HCV-encoded NS5A protein has emerged as a promising DAA target.

View Article and Find Full Text PDF

The synthesis and structure-activity relationships of a series of novel interferon inducers are described. Pharmacokinetic studies and efficacy assessment of a series of 8-oxo-3-deazapurine analogues led to the identification of compound 33, a potent and selective agonist of the TLR7 receptor with an excellent in vivo efficacy profile in a mouse model.

View Article and Find Full Text PDF

The synthesis and structure-activity relationship of a series of novel gp120-CD4 inhibitors are described. Pharmacokinetic studies and antiviral spectrum assessment of lead compounds led to the identification of compound 36, a potent gp120-CD4 inhibitor which exhibited antiviral potency across a spectrum of 25 clade B isolates.

View Article and Find Full Text PDF

A series of piperazine derivatives were designed and synthesised as gp120-CD4 inhibitors. SAR studies led to the discovery of potent inhibitors in a cell based anti viral assay represented by compounds 9 and 28. The rat pharmacokinetic and antiviral profiles of selected compounds are also presented.

View Article and Find Full Text PDF