A fundamental understanding of the protein retention mechanism in preparative ion exchange (IEX) chromatography columns is essential for a model-based process development approach. For the past three decades, the mechanistic description of protein retention has been based predominantly on the steric mass action (SMA) model. In recent years, however, retention profiles of proteins have been reported more frequently for preparative processes that are not consistent with the mechanistic understanding relying on the SMA model.
View Article and Find Full Text PDFFor mechanistic modeling of ion exchange (IEX) processes, a profound understanding of the adsorption mechanism is important. While the description of protein adsorption in IEX processes has been dominated by stoichiometric models like the steric mass action (SMA) model, discrepancies between experimental data and model results suggest that the conceptually simple stoichiometric description of protein adsorption provides not always an accurate representation of nonlinear adsorption behavior. In this work an alternative colloidal particle adsorption (CPA) model is introduced.
View Article and Find Full Text PDFMechanistic modeling of protein adsorption has gained increasing importance in the development of ion-exchange (IEX) chromatography processes. The most common adsorption models use a stoichiometric representation of the adsorption process based on the law of mass action. Despite the importance of these models in model-based development, the stoichiometric representation of the adsorption process is not accurate for the description of long-range electrostatic interactions in IEX chromatography, limiting the application and mechanistic extension of these models.
View Article and Find Full Text PDFA main requirement for the implementation of model-based process development in industry is the capability of the model to predict high protein load densities. The frequently used steric mass action isotherm assumes a thermodynamically ideal system and, hence constant activity coefficients. In this manuscript, an industrial antibody purification problem under high load conditions is considered where this assumption does not hold.
View Article and Find Full Text PDFWithin the Quality by Design (QbD) framework proposed by the International Conference on Harmonisation (ICH), high-throughput process development (HTPD) and mechanistic modeling are of outstanding importance for future biopharmaceutical chromatography process development. In order to compare the data derived from different column scales or batch chromatographies, the amount of adsorber has to be quantified with the same noninvasive method. Similarly, an important requirement for the implementation of mechanistic modeling is the reliable determination of column characteristics such as the ionic capacity Λ for ion-exchange chromatography with the same method at all scales and formats.
View Article and Find Full Text PDF