Publications by authors named "Thiemann W"

The Philae lander of the Rosetta space mission made a non-nominal landing on comet 67P/Churyumov-Gerasimenko on November 12, 2014. Shortly after, using the limited power available from Philae's batteries, the COSAC instrument performed a single 18-minutes gas chromatogram, which has remained unpublished until now due to the lack of identifiable elution. This work shows that, despite the unsuccessful drilling of the comet and deposition of surface material in the SD2 ovens, the measurements from the COSAC instrument were executed nominally.

View Article and Find Full Text PDF

The most pristine material of the Solar System is assumed to be preserved in comets in the form of dust and ice as refractory matter. ESA's mission Rosetta and its lander Philae had been developed to investigate the nucleus of comet 67P/Churyumov-Gerasimenko in situ. Twenty-five minutes after the initial touchdown of Philae on the surface of comet 67P in November 2014, a mass spectrum was recorded by the time-of-flight mass spectrometer COSAC onboard Philae.

View Article and Find Full Text PDF

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds—methyl isocyanate, acetone, propionaldehyde, and acetamide—that had not previously been reported in comets.

View Article and Find Full Text PDF

More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds.

View Article and Find Full Text PDF

L-amino acids and D-carbohydrates were incorporated into the first forms of life over 3.5 billion years ago, presumably from racemic mixtures of organic solutes produced by abiotic synthetic pathways. The process by which this choice occurred has not been established, but a consensus view is that it was a chance event, such that life could equally well have used D-amino acids and L sugars.

View Article and Find Full Text PDF

Diamino carboxylic acids have recently come to the attention of scientists working in the field of early life and its development. These are the monomers of a hypothetic early form of genetic material, the so-called Peptide Nucleic Acid (PNA) (Nielson et al., Proc Natl Acad Sci USA 2000;97:3868-3871).

View Article and Find Full Text PDF

Biological cofactors include functionalized derivatives of cyclic tetrapyrrole structures that incorporate different metal ions. They build up structural partnerships with proteins, which play a crucial role in biochemical reactions. Porphyrin, chlorin, bacteriochlorin, and corrin are the basic structures of cofactors (heme, chlorophyll, bacteriochlorophyll, siroheme, F 430, and vitamin B12).

View Article and Find Full Text PDF

Amino acids identified in the Murchison chondritic meteorite by molecular and isotopic analysis are thought to have been delivered to the early Earth by asteroids, comets, and interplanetary dust particles where they may have triggered the appearance of life by assisting in the synthesis of proteins via prebiotic polycondensation reactions [Oró, J. (1961) Nature 190, 389-390; Chyba, C. F.

View Article and Find Full Text PDF

Biopolymers like DNA and proteins are strongly selective towards the chirality of their monomer units. The use of homochiral monomers is regarded as essential for the construction and function of biopolymers; the emergence of the molecular asymmetry is therefore considered as a fundamental step in Chemical Evolution. This work focuses on physicochemical mechanisms for the origin of biomolecular asymmetry.

View Article and Find Full Text PDF

A new fluorescent probe for PbII, p-nitrophenyl 3H-phenoxazin-3-one-7-yl phosphoric acid (NPPA), was designed and synthesized by linking resorufin (serving as a fluorophore and electron acceptor) to p-nitrophenol (serving as a fluorescence quencher and electron donor) through phosphodiester bonds. When NPPA was irradiated with light, intramolecular fluorescence self-quenching took place because of the photoinduced electron transfer from the donor to the acceptor. However, upon the addition of PbII, the phosphate ester bonds in the probe were cleaved and the fluorophore was released, accompanying the retrievement of fluorescence.

View Article and Find Full Text PDF

Enantiomers of chiral aliphatic hydrocarbons are generally difficult to separate because they lack functional groups to be derivatized in order to generate diastereomers. The systematic and quantitative separation of a series of branched hydrocarbon enantiomers using a chiral cyclodextrin stationary phase and a cryostat-controlled gas chromatograph is described. The use of a cryogenic system allows the improvement of separations for various chiral aliphatic hydrocarbons.

View Article and Find Full Text PDF

As part of the development of the European Space Agency Rosetta space mission to investigate a cometary nucleus, the selection of columns dedicated to the gas chromatographic subsystem of the Cometary Sampling and Composition (COSAC) experiment was achieved. Once the space probe launched, these columns will be exposed to the harsh environmental constraints of space missions: vibrations, radiation (by photons or energetic particles), space vacuum, and large temperature range. In order to test the resistance of the flight columns and their stationary phases, the columns were exposed to these rough conditions reproduced in the laboratory.

View Article and Find Full Text PDF

Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations.

View Article and Find Full Text PDF

The degradation of methamidophos in pure bi-distilled water (with initial concentration 5 mg L(-1), pH = 7 at the beginning) was studied. For the first time, 2 ionised air water treatment pilot systems (IAPS-1, -2, no additives) were set up (Figs. 1 and 2).

View Article and Find Full Text PDF

Fifteen insecticides, which were banned in Vietnam in the period from 1990 to 1998, were chosen for the investigation of surface water samples in Hanoi and its surroundings. The investigation was focused on an area of approximately 30 by 20 km. Thirty water samples, in total were analysed: 11 samples from the Red river, seven from the Duong river, four from various lakes (West lake, Thuyen Quang, Bay Mau, Ba Mau), six from irrigation canals and two samples from wells.

View Article and Find Full Text PDF

Chlorinated paraffins (CPs) pose a major risk in the environment, due to their wide application, to their persistence, to their carcinogenic potential, and in view of the fact, that they cannot be easily identified. Various commercial cutting fluids and sealing materials were analysed for CPs with carbon skeleton reaction gas chromatography (GC) and flame ionization detection. CPs are simultaneously dechlorinated and hydrogenated to the corresponding alkanes with Pd catalyst material in the GC injector.

View Article and Find Full Text PDF

Amino acids are the essential molecular components of living organisms on Earth, but the proposed mechanisms for their spontaneous generation have been unable to account for their presence in Earth's early history. The delivery of extraterrestrial organic compounds has been proposed as an alternative to generation on Earth, and some amino acids have been found in several meteorites. Here we report the detection of amino acids in the room-temperature residue of an interstellar ice analogue that was ultraviolet-irradiated in a high vacuum at 12 K.

View Article and Find Full Text PDF

The Cometary Sampling and Composition Experiment on board of European Space Agency's cornerstone mission ROSETTA is designed to identify organic molecules in cometary matter in situ by a combined pyrolysis gas chromatographic and mass spectrometric technique. Its capillary columns coated with chiral stationary phases received considerable attention, because they are designed for separations of non-complex enantiomers to allow the determination of enantiomeric ratios of cometary chiral organic compounds and consequently to provide information about the origin of molecular parity violation in biomolecules. To get gas chromatographic access to organic compounds on the comet, where macromolecules and complex organic polymers of low volatility are expected to make up the main organic ingredients, the combination of two injection techniques will be applied.

View Article and Find Full Text PDF

In the last years extraterrestrial scenarios for the origin of homochirality in biological structures received considerable attention in the topical literature: Rubenstein and Bonner postulated a rapidly rotating neutron star emitting circularly polarised synchrotron radiation responsible for the first asymmetric synthesis; the group of Bailey published the observation of circular polarisation caused by Mie scattering from aligned dust grains in the Orion OMC-1 star-formation region that might provide an enantioselective effect on prochiral or racemic organic molecules. Rikken and Raupach observed a magnetochiral effect and considered extraterrestrial magnetic fields of sufficient strengths to introduce biomoleculars parity violation. With the aim to investigate these hypotheses among other theories describing the origin of biological asymmetry, our laboratory participates in the conception and development of ROSETTA's COSAC Experiment, that is designed to identify organic molecules in the cometary matter in situ.

View Article and Find Full Text PDF

At present the European Space Agency is working on one of its Cornerstone Missions, named "Rosetta", to be launched in January 2003 for a visit to comet 46P/Wirtanen2 in 2011. The Rosetta spacecraft will carry a small subsatellite, the Rosetta Lander3 (RoLand), to be detached from the orbiter and land on the surface of the comet's nucleus. One of our main scientific interests is to find out whether chiral organic compounds in cometary matter brought to the Earth by cometary impacts might have had, due to corresponding enantiomeric excesses, a seed function in determining the handedness which is characteristic of homochiral compounds employed by life on Earth.

View Article and Find Full Text PDF

The analysis of oxidative degradation products of 2,4,6-trichlorophenol (TCP) treated with air ions, which are generated by electric discharge, is reported. Due to the complex nature of the degradation products, a combination of different detection techniques was employed to characterize them. The oxidative degradation of TCP is usually dependent on the treating approaches, and in this system, a stepwise degradation, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol as well as other minor ones (e.

View Article and Find Full Text PDF

Until now the favored method for separating racemic pairs of underivatized alcohols, diols, and phenylsubstituted amines has been gas chromatography on cyclodextrin phases. However, certain enantiomers of saturated chiral hydrocarbons could not be resolved in this way because they lack the functional groups necessary to undergo "intensive" diastereomeric interactions with the cyclodextrins. The present study describes a gas-chromatographic technique for resolution of saturated aliphatic hydrocarbons into their enantiomers and presents a brief discussion of the possible applications.

View Article and Find Full Text PDF

New crucial theoretical investigations on the origin of biomolecular chirality are reviewed briefly. With the goal to investigate these theories our team is going to perform the 'chirality-experiment' in the near future with cometary matter. In 2012 the robotical lander RoLand will detach from the orbiter of the ROSETTA spacecraft and set down on the surface of comet 46P/Wirtanen in order to separate and identify cometary organic compounds via GC-MS in situ.

View Article and Find Full Text PDF