Int J Parasitol Parasites Wildl
December 2024
Identifying marine trematode parasites in host tissue can be complicated when there is limited morphological differentiation between species infecting the same host species. This poses a challenge for regular surveys of the parasite communities in species of socio-economic and ecological importance. Our study focused on identifying digenean trematode species infecting the marine bivalve across Europe by comparing morphological and molecular species identification methods.
View Article and Find Full Text PDFClimate change may exacerbate the impact of invasive parasites from warmer climates through pre-existing temperature adaptations. We investigated temperature impacts on two closely related marine parasitic copepod species that share the blue mussel () as host: has invaded the system from a warmer climate <20 years ago, whereas its established congener has had >90 years to adapt. In laboratory experiments with temperatures 10-26°C, covering current and future temperatures as well as heat waves, the development of both life cycle stages of both species accelerated with increasing temperature.
View Article and Find Full Text PDFAmong the ecological functions and services of biodiversity is the potential buffering of diseases through dilution effects where increased biodiversity results in a reduction in disease risk for humans and wildlife hosts. Whether such effects are a universal phenomenon is still under intense debate and diversity effects are little studied in cases when non-host organisms remove free-living parasite stages during their transmission from one host to the next by consumption or physical obstruction. Here, we investigated non-host diversity effects on the removal of cercarial stages of trematodes, ubiquitous parasites in aquatic ecosystems.
View Article and Find Full Text PDFBiological trait analysis (BTA) is a valuable tool for evaluating changes in community diversity and its link to ecosystem processes as well as environmental and anthropogenic perturbations. Trait-based analytical techniques like BTA rely on standardised datasets of species traits. However, there are currently only a limited number of datasets available for marine macrobenthos that contain trait data across multiple taxonomic groups.
View Article and Find Full Text PDFThe mussel , a host to various trematode species, experiences performance decrements due to these infections. Yet, the impact magnitude and potential interactions with environmental stressors remain largely unexplored. This study scrutinizes the effect of infections on mussel filtration and respiration.
View Article and Find Full Text PDFWild animals are usually infected with parasites that can alter their hosts' trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs.
View Article and Find Full Text PDFPredators can affect parasite-host interactions when directly preying on hosts or their parasites. However, predators may also have non-consumptive indirect effects on parasite-host interactions when hosts adjust their behaviour or physiology in response to predator presence. In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host.
View Article and Find Full Text PDFGiven their sheer cumulative biomass and ubiquitous presence, parasites are increasingly recognized as essential components of most food webs. Beyond their influence as consumers of host tissue, many parasites also have free-living infectious stages that may be ingested by non-host organisms, with implications for energy and nutrient transfer, as well as for pathogen transmission and infectious disease dynamics. This has been particularly well-documented for the cercaria free-living stage of digenean trematode parasites within the Phylum Platyhelminthes.
View Article and Find Full Text PDFGlobal warming may alter the dynamics of infectious diseases by affecting important steps in the transmission of pathogens and parasites. In trematode parasites, the emergence of cercarial stages from their hosts is temperature-dependent, being highest around a thermal optimum. If environmental temperatures exceed this optimum as a consequence of global warming, this may affect cercarial transmission.
View Article and Find Full Text PDFThere is a global rise in anthropogenic noise and a growing awareness of its negative effects on wildlife, but to date the consequences for wildlife diseases have received little attention. In this paper, we discuss how anthropogenic noise can affect the occurrence and severity of infectious wildlife diseases. We argue that there is potential for noise impacts at three main stages of pathogen transmission and disease development: (i) the probability of preinfection exposure, (ii) infection upon exposure, and (iii) severity of postinfection consequences.
View Article and Find Full Text PDFAvian schistosomes, comprise a diverse and widespread group of trematodes known for their surprising ability to switch into new hosts and habitats. Despite the considerable research attention on avian schistosomes as causatives of the human cercarial dermatitis, less it is known about the diversity, geographical range and host associations of the marine representatives. Our molecular analyses inferred from cox1 and 28S DNA sequence data revealed presence of two schistosome species, Ornithobilharzia canaliculata (Rudolphi, 1819) Odhner, 1912 and a putative new species of Austrobilharzia Johnston, 1917.
View Article and Find Full Text PDFCercarial activity and survival are crucial traits for the transmission of trematodes. Temperature is particularly important, as faster depletion of limited cercarial energy reserves occurs at high temperatures. Seasonal climate conditions in high latitude regions may be challenging to complete trematode life cycle during the 6-month ice-free period, but temperature effects on the activity and survival of freshwater cercariae have not been previously identified.
View Article and Find Full Text PDFAlthough it is generally known that a combination of abiotic and biotic drivers shapes the distribution and abundance of parasites, our understanding of the interplay of these factors remains to be assessed for most marine host species. The present field survey investigated spatial patterns of richness, prevalence and abundance of parasites in Mytilus galloprovincialis along the coast of the northern Adriatic Sea. Herein, the relationships between biotic (host size, density and local parasite richness of mussel population) and abiotic (eutrophication and salinity) drivers and parasite richness of mussel individuals, prevalence and abundance were analysed.
View Article and Find Full Text PDFStable isotopes of carbon and nitrogen characterize trophic relationships in predator-prey relationships, with clear differences between consumer and diet (discrimination factor ΔC and ΔN). However, parasite-host isotopic relationships remain unclear, with ΔC and ΔN remaining incompletely characterized, especially for helminths. In this study, we used stable isotopes to determine discrimination factors for 13 parasite-host pairings of helminths in coral reef fish.
View Article and Find Full Text PDFTrematode prevalence and abundance in hosts are known to be affected by biotic drivers as well as by abiotic drivers. In this study, we used the unique salinity gradient found in the south-western Baltic Sea to: (i) investigate patterns of trematode infections in the first intermediate host, the periwinkle Littorina littorea and in the downstream host, the mussel Mytilus edulis, along a regional salinity gradient (from 13 to 22) and (ii) evaluate the effects of first intermediate host (periwinkle) density, host size and salinity on trematode infections in mussels. Two species dominated the trematode community, Renicola roscovita and Himasthla elongata.
View Article and Find Full Text PDFThe synthesis of enantiomerically pure B-ring fluorinated catechin derivatives is presented. In a convergent approach the chromane was obtained by reaction of a lithiated fluoro-resorcine with an optically active epoxide. The latter was prepared from 3,4-difluorobenzaldehyde by reaction with vinylmagnesium bromide followed by Sharpless epoxidation.
View Article and Find Full Text PDFViruses are the most abundant biological entities in marine environments, however, despite its potential ecological implications, little is known about virus removal by ambient non-host organisms. Here, we examined the effects of a variety of non-host organisms on the removal of viruses. The marine algal virus PgV-07T (infective to Phaeocystis globosa) can be discriminated from bacteriophages using flow cytometry, facilitating its use as a representative model system.
View Article and Find Full Text PDFThe Baltic tellin Limecola balthica is one of the most common bivalves in intertidal areas in the Northern Hemisphere. Over the last 2 decades, the species has been suffering from a decrease in adult survival in the European Wadden Sea. While several factors such as global warming and fisheries have been suggested to influence the population dynamics of this bivalve mollusc, the potential role of diseases has never been investigated.
View Article and Find Full Text PDFInvasive species, and especially invasive parasites, represent excellent models to study ecological and evolutionary mechanisms in the wild. To understand these processes, it is crucial to obtain more knowledge on the native range, invasion routes and invasion history of invasive parasites. We investigated the consecutive invasions of two parasitic copepods (Mytilicola intestinalis and Mytilicola orientalis) by combining an extensive literature survey covering the reported putative native regions and the present-day invaded regions with a global phylogeography of both species.
View Article and Find Full Text PDFThere are surprisingly few field studies on the role of invasive species on parasite infection patterns in native hosts. We investigated the role of invasive Pacific oysters (Magallana gigas) in determining parasite infection levels in native blue mussels (Mytilus edulis) in relation to other environmental and biotic factors. Using hierarchical field sampling covering three spatial scales along a large intertidal ecosystem (European Wadden Sea), we found strong spatial differences in infection levels of five parasite species associated with mussels and oysters.
View Article and Find Full Text PDFIdentifying the factors shaping variation in parasite diversity among host species is crucial to understand wildlife diseases. Although micro- and macroparasites may exert different selective pressures on their hosts, studies investigating the determinants of parasite species richness in animals have rarely considered this divide. Here, we investigated the role of host life history and ecology in explaining the species richness of helminths (macroparasites) and haemosporidians (microparasites) in birds world-wide.
View Article and Find Full Text PDFParasite transmission can be altered via the removal of parasites by the ambient communities in which parasite-host interactions take place. However, the mechanisms driving parasite removal remain poorly understood. Using marine trematode cercariae as a model system, we investigated the effects of consumer and host body size on parasite removal rates.
View Article and Find Full Text PDFBackground: Parasites can play various roles in the invasion of non-native species, but these are still understudied in marine ecosystems. This also applies to invasions from the Red Sea to the Mediterranean Sea via the Suez Canal, the so-called Lessepsian migration. In this study, we investigated the role of parasites in the invasion of the Lessepsian migrant in the Tunisian Mediterranean Sea.
View Article and Find Full Text PDFDespite their frequent occurrence and strong impacts on native biota, biological invasions can long remain undetected. One reason for this is that an invasive species can be morphologically similar to either native species or introduced species previously established in the same region, and thus be subject to mistaken identification. One recent case involves congeneric invasive parasites, copepods that now infect bivalve hosts along European Atlantic coasts, after having been introduced independently first from the Mediterranean Sea (Mytilicola intestinalis Steuer, 1902) and later from Japan (Mytilicola orientalis Mori, 1935).
View Article and Find Full Text PDF