Publications by authors named "Thiebot B"

Article Synopsis
  • MandibuloAcral Dysplasia associated to MTX2 gene (MADaM) is an accelerated aging disease characterized by skin issues, growth delays, and heart-related problems.
  • Research using mtx-2-deficient C. elegans (a type of worm) shows they exhibit similar aging characteristics to humans with MADaM, including rougher skin texture and poor mitochondrial function.
  • The findings from various analyses support these worms as a promising model to explore MADaM's molecular mechanisms and help develop potential treatments.
View Article and Find Full Text PDF

Until now, no fast, low-cost, and direct technique exists to identify and detect protein/peptide enantiomers, because their mass and charge are identical. They are essential since l- and d-protein enantiomers have different biological activities due to their unique conformations. Enantiomers have potential for diagnostic purposes for several diseases or normal bodily functions but have yet to be utilized.

View Article and Find Full Text PDF

The mechanical properties of living cells reflect their physiological and pathological state. In particular, cancer cells undergo cytoskeletal modifications that typically make them softer than healthy cells, a property that could be used as a diagnostic tool. However, this is challenging because cells are complex structures displaying a broad range of morphologies when cultured in standard 2D culture dishes.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) represent an interesting source of biomarkers for diagnosis, prognosis, and the prediction of cancer recurrence, yet while they are extensively studied in oncobiology research, their diagnostic utility has not yet been demonstrated and validated. Their scarcity in human biological fluids impedes the identification of dangerous CTC subpopulations that may promote metastatic dissemination. In this Perspective, we discuss promising techniques that could be used for the identification of these metastatic cells.

View Article and Find Full Text PDF

Standard cell cultures are one of the pillars of biomedical sciences. However, there is increasing evidence that 2D systems provide biological responses that are often in disagreement with observations, partially due to limitations in reproducing the native cellular microenvironment. 3D materials that are able to mimic the native cellular microenvironment to a greater extent tackle these limitations.

View Article and Find Full Text PDF

Biomimetic ion channels with different materials have been extensively designed to study the dynamics in a confined medium. These channels allow the development of several applications, such as ultra-fast sequencing and biomarker detection. When considering their synthesis, the use of cheap, non-cytotoxic and readily available materials is an increasing priority.

View Article and Find Full Text PDF

Biomimetic ion channels can be made to display the high sensitivity of natural protein nanopores and to develop new properties as a function of the material used. How to design the best future biomimetic channels? The main challenges are to control their sensitivity, as well as their syntheses, chemical modifications, insertion and lifetime in a lipid membrane. To address these challenges, we have recently designed short cyclodextrin nanotubes characterized by mass spectrometry and high-resolution transmission electron microscopy.

View Article and Find Full Text PDF

We describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged.

View Article and Find Full Text PDF

We use single-cell force spectroscopy to compare elasticity, adhesion, and tether extrusion on four breast cancer cell lines with an increasing invasive potential. We perform cell attachment/detachment experiments either on fibronectin or on another cell using an atomic force microscope. Our study on the membrane tether formation from cancer cells show that they are easier to extrude from aggressive invasive cells.

View Article and Find Full Text PDF

Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins.

View Article and Find Full Text PDF

Being able to differentiate local fluctuations from global folding-unfolding dynamics of a protein is of major interest for improving our understanding of structure-function determinants. The maltose binding protein (MBP), a protein that belongs to the maltose transport system, has a structure composed of two globular domains separated by a rigid-body "hinge bending". Here we determined, by using hydrogen exchange (HX) nuclear magnetic resonance experiments, the apparent stabilization free energies of 101 residues of MBP bound to β-cyclodextrin (MBP-βCD) under native conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Protein export involves the transport of unfolded proteins through a channel, with this study examining the process using an aerolysin nanopore at the single-molecule level.
  • The researchers found that the frequency of current blockades varies based on applied voltage and protein concentration, with faster transport times at higher voltages.
  • The findings align with theories on polyelectrolyte transport and suggest that aerolysin nanopores could be useful for studying protein folding, similar to previous research done with α-hemolysin.
View Article and Find Full Text PDF

We determined the ability of Maltose Binding Protein and the polyelectrolyte dextran sulfate to enter into and interact with channels formed by Staphylococcus aureus alpha-hemolysin. The entry of either macromolecule in the channel pore causes transient, but well-defined decreases in the single-channel ionic current. The protein and polyelectrolyte were more likely to enter the pore mouth at the channel's cap domain than at the stem side.

View Article and Find Full Text PDF

We study the entry and transport of a polyelectrolyte, dextran sulfate (DS), through an asymmetric alpha-hemolysin protein channel inserted into a planar lipid bilayer. We compare the dynamics of the DS chains as they enter the channel at the opposite stem or vestibule sides. Experiments are performed at the single-molecule level by using an electrical method.

View Article and Find Full Text PDF

The aim of this work is to study pore protein denaturation inside a lipid bilayer and to probe current asymmetry as a function of the channel conformation. We describe the urea denaturation of alpha-hemolysin channel and the channel formation of alpha-hemolysin monomer incubated with urea prior to insertion into a lipid bilayer. Analysis of single-channel recordings of current traces reveals a sigmoid curve of current intensity as a function of urea concentration.

View Article and Find Full Text PDF

Like the majority of tumor cells, ovarian cancer cell growth is critically dependent on their neovascularization. Adhesion molecules and cellular events that lead to ovarian tumor cell interactions with endothelial extracellular matrix surrounding the vasculature are poorly identified. To understand the role of alphavbeta3 integrin and its ligand fibronectin in this process, we used in vitro coculture models with IGROV1 human ovarian adenocarcinoma cell line and human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

In Mollusca, the mantle produces an organic matrix that mineralizes in time to make shell. Primary mantle cell cultures from the nacreous gastropod Haliotis tuberculata have been established as useful experimental model to investigate in vitro synthesis of both proteoglycans/glycosaminoglycans (PGs/GAGs) and collagen. First, we tested different enzymatic digestion procedures to find the method that gives the highest percentage of viable and adherent cultured cells.

View Article and Find Full Text PDF

Introduction: The necessity of excising melanomas characterized by a slight thickness at an early stage, leads dermatologists to remove pigmented lesions which do not correspond to melanomas. The aims of this study were: a) to prospectively assess the accuracy of melanoma diagnosis, b) to quantify the number of excisions performed according to the degree of melanoma suspicion, c) to determine the specific clinical sign or signs of relevant diagnostic value.

Patients And Methods: This study was conducted prospectively from January 1996 to August 1997 by dermatologists in private practice and dermatologists from a University Hospital staff.

View Article and Find Full Text PDF

The influence of phorbol myristate acetate (PMA), dibutyryl cAMP and insulin-like growth factor (IGF-1) as well as cytoskeletal disrupting drugs on morphological changes has been studied in peritubular cells isolated from immature rat testis. Morphological studies were combined with immunofluorescence investigations of cytoskeletal elements and their rearrangements by various agents. The results were correlated with modulation of proteoglycan synthesis.

View Article and Find Full Text PDF

In cultured peritubular cells (PT) from rat testis, protein kinase C (PKC) was activated by phorbol 12-myristate 13-acetate (PMA). PMA enhanced the synthesis of proteoglycans (PG) and to a lesser extent their catabolism; the stimulation of the synthesis appeared to be due to an increase in PG protein moiety production and, at the same time, to an increase in the glycanation process as revealed by the use of an exogenous acceptor, p-nitrophenyl-beta-d-xyloside. In the presence of PMA, the molecular weight of neosynthesized PG and the length of their constitutive glycosaminoglycan chains were not modified.

View Article and Find Full Text PDF

The effects of an increase in intracellular cAMP concentration on proteoglycan (PG) synthesis by peritubular (PT) cells from immature rat testis were investigated. In the presence of dBcAMP for 72 h, the [3H]-hexosamine incorporation in secreted PG and in cell-associated PG was reduced, whereas [35S]-sulfate radioactivity was enhanced in secreted PG and not affected in cell-associated PG. Cholera toxin and IBMX, known to generate high intracellular cAMP levels, induced similar changes.

View Article and Find Full Text PDF

The exposure of confluent peritubular (PT) cells from immature rat testis to insulin-like growth factor-1 (IGF-1) induced a time and dose-dependent increase of [35S]-sulfate and [3H]-D-glucosamine incorporations in newly synthesized proteoglycans (PG). This increased content of PG was the result of an enhancement of PG synthesis rather than a decreased rate of degradation. IGF-1 had no effect on the molecular weight of synthesized PG nor on the nature and distribution of the constitutive glycosaminoglycan chains, both in medium and in cell layer.

View Article and Find Full Text PDF

Confluent testicular peritubular cells derived from immature rats were used to study membrane associated proteoglycans (PG). Peripheral material (heparin releasable), membrane and intracellular material (Triton X-100 releasable) were collected, purified by anion exchange chromatography then characterized by gel filtration and by hydrophobic interaction chromatography, followed by enzymatic digestion and chemical treatment. The peripheral material was constituted of two populations of PG (Kav = 0 and 0.

View Article and Find Full Text PDF