This study utilized grab and strip testing methods to examine the relationship between three weave structures-plain, twill, and satin-and their tensile strengths in both warp and weft directions. In addition, microplastic fiber (MPF) emissions from these three weave structures were quantified at different states of the laundry process using filtration and microscopy. The grab and strip tests revealed that twill- and satin-woven fabrics exhibited higher tensile strengths in the warp direction compared to the weft orientation.
View Article and Find Full Text PDFThe use of washing machines to wash textiles gradually breaks down synthetic fibers like polyethylene terephthalate (PET) or polyester (PES) in diverse clothing materials, a process that is growing in notoriety because it generates microplastics (MPs). In this study, we investigated the emission of microfibers, including both microplastic fibers (MPFs) and natural fibers (MFs), from top-loading washing machines. Our investigation focused on four popular textiles with prevalent weave structures (plain, satin, and twill): (i) PES, (ii) tetron cotton (TC), (iii) chief value cotton (CVC), and (iv) cotton (CO) fabrics.
View Article and Find Full Text PDF