Objective: Today, there is only limited knowledge of the spatial organization of hair chemistry. Infrared microspectroscopy is a well-established tool to provide such information and has significantly contributed to this field. In this study, we present new results combining multiple infrared microspectroscopy methods at different length scales to create a better chemical histology of human hair, including the hair follicle, hair shaft, hair medulla and hair cuticle.
View Article and Find Full Text PDFThe complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair.
View Article and Find Full Text PDFThe family of transglutaminases (TGase) is known to be involved in terminal differentiation processes in the epidermis. These enzymes contribute also to the physical resistance and the preservation of the hair follicle structure. Our particular interest in hair fiber keratinization led us to focus on the TGase 3, exclusively expressed in the hair shaft.
View Article and Find Full Text PDFHeparanase is a heparan sulphate endo-glycosidase which was previously detected in the outer root sheath of murine hair follicles. Heparanase overexpression was reported to improve mouse hair (re)growth. In this study, we investigated its involvement in human hair biology.
View Article and Find Full Text PDFBackground: In human hair, very little is known about the substructures relating to the curl pattern. The interpretation of the macroscopic shape of the fiber at the molecular and cellular scales is still unclear.
Methods: A comparative and multiscale study was carried out on a set of human hair samples, ranging in shape from straight to tightly curled, in order to investigate structural elements that might be related to hair curl pattern.
Biochem Biophys Res Commun
September 2007
The epidermis is a multi-layered stratified epithelium continuously renewed by differentiating keratinocytes that develops by the action of p63, a member of the p53 family. The TP63 contains two promoters, resulting in the expression of different proteins, containing (TAp63) or not (DeltaNp63) an amino-terminal transactivation domain, which contribution in skin formation is not fully understood. We found that p63 binds and transactivate GATA-3 promoter, which in turn transactivate IKKalpha, two pivotal regulators of epithelial development.
View Article and Find Full Text PDF