This article presents a magnetically actuated two-way, three-position (+, 0, -), paper-based microfluidic valve that includes a neutral position (0)-the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices.
View Article and Find Full Text PDFCells are able to sense and react to their physical environment by translating a mechanical cue into an intracellular biochemical signal that triggers biological and mechanical responses. This process, called mechanotransduction, controls essential cellular functions such as proliferation and migration. The cellular response to an external mechanical stimulation has been investigated with various static and dynamic systems, so far limited to global deformations or to local stimulation through discrete substrates.
View Article and Find Full Text PDFAim: We present a fast magnetic immunoassay, combining magnetic nanoparticles and micromagnets. High magnetic field gradients from micromagnets are used to develop a new approach to the standard ELISA. Materials & methods/results: A proof-of-concept based on colorimetric quantification of antiovalbumin antibody in buffer is performed and compared with an ELISA.
View Article and Find Full Text PDFIntegr Biol (Camb)
November 2016
Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates.
View Article and Find Full Text PDFLocal polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board.
View Article and Find Full Text PDFThe structural analysis of GaN and Al Ga N/GaN heterostructures grown by metalorganic vapor phase epitaxy in the presence of Mn reveals how Mn affects the growth process and in particular, the incorporation of Al, the morphology of the surface, and the plastic relaxation of Al Ga N on GaN. Moreover, the doping with Mn promotes the formation of layered Al Ga N/GaN superlattice-like heterostructures, which opens wide perspectives for controlling the segregation of ternary alloys during the crystal growth and for fostering the self-assembling of functional layered structures.
View Article and Find Full Text PDFOwing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mn(n+) charge and spin state in the range 3≤n≤5 and 2≥S≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg(k), where the number of ligands k is pre-defined by fabrication conditions.
View Article and Find Full Text PDFThe emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix.
View Article and Find Full Text PDF