Reversible and programmable shaping of surfaces promises wide-ranging applications in tunable optics and acoustic metasurfaces. Based on acoustic radiation pressure, contactless and real-time deformation of fluid interface can be achieved. This paper presents an experimental and numerical study to characterize the spatiotemporal properties of the deformation induced by acoustic radiation pressure.
View Article and Find Full Text PDFSystems capable of breaking wave transmission reciprocity have recently led to tremendous developments in wave physics. We report herein on a concept that enables one-way transmission of ultrasounds, an acoustic diode, by relying on the radiation pressure effect. This effect makes it possible to reconfigure a multilayer system by significantly deforming a water-air interface.
View Article and Find Full Text PDFThis Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 10^{6}, with wide band (10 kHz) and an audible effect.
View Article and Find Full Text PDF