Publications by authors named "Thibaut Defever"

The proof-of-principle of a nonoptical real-time PCR method based on the electrochemical monitoring of a DNA intercalating redox probe that becomes considerably less easily electrochemically detectable once intercalated to the amplified double-stranded DNA is demonstrated. This has been made possible thanks to the finding of a redox intercalator that (i) strongly and specifically binds to the amplified double-stranded DNA, (ii) does not significantly inhibit PCR, (iii) is chemically stable under PCR cycling, and (iv) is sensitively detected by square wave voltammetry during PCR cycling. Among the different DNA intercalating redox probes that we have investigated, namely, methylene blue, Os[(bpy)(2)phen](2+), Os[(bpy)(2)DPPZ](2+), Os[(4,4'-dimethyl-bpy)(2)DPPZ](2+) and Os[(4,4'-diamino-bpy)(2)DPPZ](2+) (with bpy = 2,2'-bipyridine, phen = phenanthroline, and DPPZ = dipyrido[3,2-a:2',3'-c]phenazine), the one and only compound with which it has been possible to demonstrate the proof-of-concept is the Os[(bpy)(2)DPPZ](2+).

View Article and Find Full Text PDF

We described the proof-of-principle of a nonoptical real-time PCR that uses cyclic voltammetry for indirectly monitoring the amplified DNA product generated in the PCR reaction solution after each PCR cycle. To enable indirect measurement of the amplicon produced throughout PCR, we monitor electrochemically the progressive consumption (i.e.

View Article and Find Full Text PDF