Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration.
View Article and Find Full Text PDFPurpose Of The Review: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease of the motor system due to the selective and progressive degeneration of both upper and lower motor neurons. Disturbances in energy homeostasis were repeatedly associated with the ALS pathogenesis and appear early during the disease process. In this review, we highlight recent work demonstrating the crucial role of energy metabolism in ALS and discuss its potential clinical relevance.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disorder of the motor system. While the etiology is still incompletely understood, defects in metabolism act as a major contributor to the disease progression. Recently, histone deacetylase (HDAC) inhibition using ACY-738 has been shown to restore metabolic alterations in the spinal cord of a FUS mouse model of ALS, which was accompanied by a beneficial effect on the motor phenotype and survival.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease arising from the combined degeneration of upper motor neurons (UMN) in the motor cortex, and lower motor neurons (LMN) in the brainstem and spinal cord. This dual impairment raises two major questions: (i) are the degenerations of these two neuronal populations somatotopically related? and if yes (ii), where does neurodegeneration start? If studies carried out on ALS patients clearly demonstrated the somatotopic relationship between UMN and LMN degenerations, their temporal relationship remained an unanswered question. In the present study, we took advantage of the well-described model of ALS to interrogate the somatotopic and temporal relationships between UMN and LMN degenerations in ALS.
View Article and Find Full Text PDFObjective: Recent studies carried out on amyotrophic lateral sclerosis patients suggest that the disease might initiate in the motor cortex and spread to its targets along the corticofugal tracts. In this study, we aimed to test the corticofugal hypothesis of amyotrophic lateral sclerosis experimentally.
Methods: Sod1 and Fezf2 knockout mouse lines were crossed to generate a model that expresses a mutant of the murine Sod1 gene ubiquitously, a condition sufficient to induce progressive motor symptoms and premature death, but genetically lacks corticospinal neurons and other subcerebral projection neurons, one of the main populations of corticofugal neurons.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects selected cortical and spinal neuronal populations, leading to progressive paralysis and death. A growing body of evidences suggests that the disease may originate in the cerebral cortex and propagate in a corticofugal manner. In particular, transcranial magnetic stimulation studies revealed that ALS patients present with early cortical hyperexcitability arising from a combination of increased excitability and decreased inhibition.
View Article and Find Full Text PDFAging is associated with impaired performance in behavioral pattern separation (PS) tasks based on similarities in object features and in object location. These deficits have been attributed to functional alterations in the dentate gyrus (DG)-CA3 region. Animal studies suggested a role of adult-born DG neurons in PS performance.
View Article and Find Full Text PDF