Publications by authors named "Thibault Pariat"

Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) dyes typically show strong solid-state emission, but faint fluorescence intensity is observed in the solution state owing to detrimental molecular motions. This article investigates the influence of direct (hetero)arylation on the optical properties of 2-(2'-hydroxyphenyl)benzoxazole ESIPT emitters. The synthesis of two series of ESIPT emitters bearing substituted neutral or charged aryl, thiophene, or pyridine rings is reported herein along with full photophysical studies in solution and solid states, demonstrating the dual solution-/solid-state emission behavior.

View Article and Find Full Text PDF

2-(2'-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield.

View Article and Find Full Text PDF

A series of five excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2'-hydroxyphenyl) benzoxazole (HBO) scaffold, functionalized with a mono-or bis-(trialkylsilyl) acetylene extended spacer are presented. Investigation of their photophysical properties in solution and in the solid-state in different matrix, along with ab initio calculations gave useful insights into their optical behavior. Random lasing studies were conducted on a series of PMMA doped thin films, showing the presence of stimulated emission above the threshold of pumping energy density (ρth ≈ 0.

View Article and Find Full Text PDF