Publications by authors named "Thibault Nidelet"

Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations.

View Article and Find Full Text PDF

A number of studies have shown the effect of cereals and sourdough on bread nutritional and organoleptic quality, but the impact of the milling technique remains little studied. There are two main types of milling technic depending on the bread-making food chain. Industrial bakeries mainly use roller mills while artisanal bakeries may also use stone mill.

View Article and Find Full Text PDF

In winemaking, the development of new fermentation strategies, such as the use of mixed starter cultures with Saccharomyces cerevisiae (Sc) yeast and non-Saccharomyces (NS) species, requires a better understanding of how yeasts interact, especially at the beginning of fermentation. Despite the growing knowledge on interactions between Sc and NS, few data are available on the interactions between different species of NS. It is furthermore still unclear whether interactions are primarily driven by generic differences between yeast species or whether individual strains are the evolutionarily relevant unit for biotic interactions.

View Article and Find Full Text PDF

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations.

View Article and Find Full Text PDF

Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated.

View Article and Find Full Text PDF

We show that a simple model with a maintenance term can satisfactorily reproduce the simulations of several existing models of wine fermentation from the literature, as well as experimental data. The maintenance describes a consumption of the nitrogen that is not entirely converted into biomass. We show also that considering a maintenance term in the model is equivalent to writing a model with a variable yield that can be estimated from data.

View Article and Find Full Text PDF

The relationship between different levels of integration is a key feature for understanding the genotype-phenotype map. Here, we describe a novel method of integrated data analysis that incorporates protein abundance data into constraint-based modeling to elucidate the biological mechanisms underlying phenotypic variation. Specifically, we studied yeast genetic diversity at three levels of phenotypic complexity in a population of yeast obtained by pairwise crosses of eleven strains belonging to two species, Saccharomyces cerevisiae and S.

View Article and Find Full Text PDF

Production of leavened bread dates to the second millennium BCE. Since then, the art of bread making has developed, yet the evolution of bread-associated microbial species remains largely unknown. Nowadays, leavened bread is made either by using a pure commercial culture of the yeast Saccharomyces cerevisiae or by propagating a sourdough-a mix of flour and water spontaneously fermented by yeasts and bacteria.

View Article and Find Full Text PDF

Microorganisms grow in concert, both in natural communities and in artificial or synthetic co-cultures. Positive interactions between associated microbes are paramount to achieve improved substrate conversion and process performance in biotransformation and fermented food production. The mechanisms underlying such positive interactions have been the focus of numerous studies in recent decades and are now starting to be well characterized.

View Article and Find Full Text PDF

Fermentation by microorganisms is a key step in the production of traditional food products such as bread, cheese, beer and wine. In these fermentative ecosystems, microorganisms interact in various ways, namely competition, predation, commensalism and mutualism. Traditional wine fermentation is a complex microbial process performed by Saccharomyces and non-Saccharomyces (NS) yeast species.

View Article and Find Full Text PDF

Sourdoughs harbor simple microbial communities usually composed of a few prevailing lactic acid bacteria species (LAB) and yeast species. However, yeast and LAB found in sourdough have been described as highly diverse. Even if LAB and yeast associations have been widely documented, the nature of the interactions between them has been poorly described.

View Article and Find Full Text PDF

The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), whose intracellular availability depends on balanced single reactions that form metabolic fluxes. Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes.

View Article and Find Full Text PDF

Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated.

View Article and Find Full Text PDF

Yeasts have been involved in bread making since ancient times and have thus played an important role in the history and nutrition of humans. Bakery-associated yeasts have only recently attracted the attention of researchers outside of the bread industry. More than 30 yeast species are involved in bread making, and significant progress has been achieved in describing these species.

View Article and Find Full Text PDF

Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels.

View Article and Find Full Text PDF

The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae.

View Article and Find Full Text PDF

Batch cultures are frequently used in experimental evolution to study the dynamics of adaptation. Although they are generally considered to simply drive a growth rate increase, other fitness components can also be selected for. Indeed, recurrent batches form a seasonal environment where different phases repeat periodically and different traits can be under selection in the different seasons.

View Article and Find Full Text PDF

Background: S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolutionary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the diversity of metabolic networks within this species.

View Article and Find Full Text PDF

Background: Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-resource for growth and to identify the underlying mechanisms. We compared the profiles of assimilation of several nitrogen sources (mostly ammonium, glutamine, and arginine) for high and low biomass-producing strains in various conditions of nitrogen availability.

View Article and Find Full Text PDF
Article Synopsis
  • Different organisms can develop similar traits independently over time, which might be influenced by shared genetic changes and historical factors.
  • In a study with six yeast strains, researchers observed that as the yeast evolved in different environments, they exhibited distinct phenotypic changes, but many traits were limited by their evolutionary history.
  • Analysis of the BMH1 gene showed that both the environment and historical context shaped the mutations, affecting traits in complex ways that weren't straightforward to foresee based on lineage or previous selections.
View Article and Find Full Text PDF

The efficiency of nitrogen use is a key determinant of the completion of alcoholic fermentation. We analyzed the kinetics of consumption of 18 nitrogen compounds by 14 Saccharomyces cerevisiae strains of various origins in a synthetic medium that mimicked a grape must. The kinetic profiles of total nitrogen consumption were diverse, but the order of nitrogen source consumption was similar for all strains.

View Article and Find Full Text PDF

Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy.

View Article and Find Full Text PDF

In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select for higher vertical transmissibility and possibly lower virulence.

View Article and Find Full Text PDF

Background: Variation of resource supply is one of the key factors that drive the evolution of life-history strategies, and hence the interactions between individuals. In the yeast Saccharomyces cerevisiae, two life-history strategies related to different resource utilization have been previously described in strains from different industrial origins. In this work, we analyzed metabolic traits and life-history strategies in a broader collection of yeast strains sampled in various ecological niches (forest, human body, fruits, laboratory and industrial environments).

View Article and Find Full Text PDF