Publications by authors named "Thibault Fovanna"

Infrared spectroscopy is widely used to analyse the surface of solid materials central to modern chemical processes. For liquid phase experiments, the attenuated total reflection mode (ATR-IR) requires the use of waveguides that can limit a broader applicability of the technique for catalysis studies. Here, we demonstrate that high quality spectra of the solid-liquid interface can be collected in diffuse reflectance mode (DRIFTS) thus opening future applications of infrared spectroscopy.

View Article and Find Full Text PDF

Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching.

View Article and Find Full Text PDF

Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/AlO based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character.

View Article and Find Full Text PDF