The theory of soliton gas had been previously developed for unidirectional integrable dispersive hydrodynamics in which the soliton gas properties are determined by the overtaking elastic pairwise interactions between solitons. In this paper, we extend this theory to soliton gases in bidirectional integrable Eulerian systems where both head-on and overtaking collisions of solitons take place. We distinguish between two qualitatively different types of bidirectional soliton gases: isotropic gases, in which the position shifts accompanying the head-on and overtaking soliton collisions have the same sign, and anisotropic gases, in which the position shifts for head-on and overtaking collisions have opposite signs.
View Article and Find Full Text PDF