Publications by authors named "Thibault Alle"

Introduction: Intraneuronal inclusions composed of tau protein are found in Alzheimer's disease (AD) and other tauopathies. Tau normally binds microtubules (MTs), and its disengagement from MTs and misfolding in AD is thought to result in MT abnormalities. We previously identified triazolopyrimidine-containing MT-stabilizing compounds that provided benefit in AD mouse models and herein describe the characterization and efficacy testing of an optimized candidate, CNDR-51997.

View Article and Find Full Text PDF

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies.

View Article and Find Full Text PDF

Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pK), lipophilicity (logD), and permeability (PAMPA).

View Article and Find Full Text PDF

Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT- active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for pharmacokinetics (PK), tolerability and efficacy studies.

View Article and Find Full Text PDF

Microtubule (MT)-stabilizing 1,2,4-triazolo[1,5-]pyrimidines (TPDs) hold promise as candidate therapeutics for Alzheimer's disease (AD) and other neurodegenerative conditions. However, depending on the choice of substituents around the TPD core, these compounds can elicit markedly different cellular phenotypes that likely arise from the interaction of TPD congeners with either one or two spatially distinct binding sites within tubulin heterodimers (, the seventh site and the vinca site). In the present study, we report the design, synthesis, and evaluation of a series of new TPD congeners, as well as matched molecular pair analyses and computational studies, that further elucidate the structure-activity relationships of MT-active TPDs.

View Article and Find Full Text PDF

We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone , a compound in clinical trials for anti-fibrotic and anti-inflammatory applications , as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry . We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection.

View Article and Find Full Text PDF

Studies in tau and Aβ plaque transgenic mouse models demonstrated that brain-penetrant microtubule (MT)-stabilizing compounds, including the 1,2,4-triazolo[1,5-]pyrimidines, hold promise as candidate treatments for Alzheimer's disease and related neurodegenerative tauopathies. Triazolopyrimidines have already been investigated as anticancer agents; however, the antimitotic activity of these compounds does not always correlate with stabilization of MTs in cells. Indeed, previous studies from our laboratories identified a critical role for the fragment linked at C6 in determining whether triazolopyrimidines promote MT stabilization or, conversely, disrupt MT integrity in cells.

View Article and Find Full Text PDF

Schistosomiasis is a parasitic disease that affects approximately 200 million people in developing countries. Current treatment relies on just one partially effective drug, and new drugs are needed. Tubulin and microtubules (MTs) are essential constituents of the cytoskeleton in all eukaryotic cells and considered potential drug targets to treat parasitic infections.

View Article and Find Full Text PDF

The hallmark pathologies of the Alzheimer's disease (AD) brain are amyloid beta (Aβ)-containing senile plaques and neurofibrillary tangles formed from the microtubule (MT)-binding tau protein. Tau becomes hyperphosphorylated and disengages from MTs in AD, with evidence of resulting MT structure/function defects. Brain-penetrant MT-stabilizing compounds can normalize MTs and axonal transport in mouse models with tau pathology, thereby reducing neuron loss and decreasing tau pathology.

View Article and Find Full Text PDF

Epicocconone is a natural latent fluorophore that is widely used in biotechnology because of its large Stokes shift and lack of fluorescence in its unconjugated state. However, the low photostability and quantum yields of epicocconone have limited its wider use, and in the absence of a total synthesis, this limitation has been a long-standing problem. Here we report a general strategy for the synthesis of epicocconone analogues that relies on a 2-iodoxybenzoic acid-mediated dearomatization and on the replacement of the triene tail of the natural product by an aromatic ring.

View Article and Find Full Text PDF