The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation.
View Article and Find Full Text PDFHistone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis.
View Article and Find Full Text PDFCurrent capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions.
View Article and Find Full Text PDFThe histone demethylase KDM6A has recently elicited significant attention because its mutations are associated with a rare congenital disorder (Kabuki syndrome) and various types of human cancers. However, distinguishing KDM6A mutations that are deleterious to the enzyme and their underlying mechanisms of dysfunction remain to be fully understood. Here, we report the results from a multi-tiered approach evaluating the impact of 197 KDM6A somatic mutations using information derived from combining conventional genomics data with computational biophysics.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is a chronic fibroinflammatory disease of the biliary tract characterized by cellular senescence and periportal fibrogenesis. Specific disease features that are cell intrinsic and either genetically or epigenetically mediated remain unclear due in part to a lack of appropriate, patient-specific, in vitro models. Recently, our group developed systems to create induced pluripotent stem cell (iPSC)-derived cholangiocytes (iDCs) and biliary epithelial organoids (cholangioids).
View Article and Find Full Text PDFDisruptor of telomeric silencing 1-like (DOT1L) is the only non-SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis.
View Article and Find Full Text PDFBackground: Kabuki syndrome is a genetic disorder that affects several body systems and presents with variations in symptoms and severity. The syndrome is named for a common phenotype of faces resembling stage makeup used in a Japanese traditional theatrical art named kabuki. The most frequent cause of this syndrome is mutations in the H3K4 family of histone methyltransferases while a smaller percentage results from genetic alterations affecting the histone demethylase, KDM6A.
View Article and Find Full Text PDFBackground & Aims: Transforming growth factor β (TGFβ) upregulates cholangiocyte-derived signals that activate myofibroblasts and promote fibrosis. Using epigenomic and transcriptomic approaches, we sought to distinguish the epigenetic activation mechanisms downstream of TGFβ that mediate transcription of fibrogenic signals.
Methods: Chromatin immunoprecipitation (ChIP)-seq and RNA-seq were performed to assess histone modifications and transcriptional changes following TGFβ stimulation.
Objectives: To determine the potential of bi-parametric dual-frequency hepatic MR elastography (MRE) for predicting portal pressure (PP) in mouse models of portal hypertension (PHTN) with the presence of varying hepatic fibrosis.
Methods: We studied 73 wild-type male mice, including 22 mice with hepatic congestion, 20 mice with cholestatic liver injury, and 31 age-matched sham mice. Hepatic shear stiffness (SS) and volumetric strain (VS) were calculated by 3D MRE acquired at 80 and 200 Hz.
Background & Aims: Autophagy plays a crucial role in hepatic homeostasis and its deregulation has been associated with chronic liver disease. However, the effect of autophagy on the release of fibrogenic extracellular vesicles (EVs) by platelet-derived growth factor (PDGF)-stimulated hepatic stellate cells (HSCs) remains unknown. Herein, we aimed to elucidate the role of autophagy, specifically relating to fibrogenic EV release, in fibrosis.
View Article and Find Full Text PDFBackground & Aims: Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation.
View Article and Find Full Text PDFBecause of its dismal outcome, pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge making the testing of new pharmacologic tools a goal of paramount importance. Here, we developed a rational approach for inhibiting PDAC growth based on leveraging cell-cycle arrest of malignant cells at a phase that shows increased sensitivity to distinct epigenomic inhibitors. Specifically, we simultaneously inhibited checkpoint kinase 1 (Chk1) by prexasertib and the G9a histone methyltransferase with BRD4770, thereby targeting two key pathways for replication fork stability.
View Article and Find Full Text PDFDuring biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor β (TGF-β). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-β signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription.
View Article and Find Full Text PDFBackground & Aims: Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts is a key event in the pathogenesis of liver fibrosis. Transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) are canonical HSC activators after liver injury. The aim of this study was to analyze the epigenetic modulators that differentially control TGF-β and PDGF signaling pathways.
View Article and Find Full Text PDFThe scaffold protein synectin plays a critical role in the trafficking and regulation of membrane receptor pathways. As platelet-derived growth factor receptor (PDGFR) is essential for hepatic stellate cell (HSC) activation and liver fibrosis, we sought to determine the role of synectin on the PDGFR pathway and development of liver fibrosis. Mice with deletion of synectin from HSC were found to be protected from liver fibrosis.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is an incurable, fibroinflammatory biliary disease for which there is no effective pharmacotherapy. We recently reported cholangiocyte senescence as an important phenotype in PSC while others showed that portal macrophages accumulate in PSC. Unfortunately, our ability to explore cholangiocyte senescence and macrophage accumulation has been hampered by limited in vitro models.
View Article and Find Full Text PDFThe current integrative pathobiologic hypothesis states that pancreatic cancer (PDAC) develops and progresses in response to an interaction between known oncogenes and downstream epigenomic regulators. Congruently, this study tests a new combinatorial therapy based on the inhibition of the Aurora kinase A (AURKA) oncogene and one of its targets, the H3K9 methylation-based epigenetic pathway. This therapeutic combination is effective at inhibiting the growth of PDAC cells both, in monolayer culture systems, and in three-dimensional spheroids and organoids.
View Article and Find Full Text PDFDespite decades of basic research, biliary diseases remain prevalent, highly morbid, and notoriously difficult to treat. We have, however, dramatically increased our understanding of biliary developmental biology, cholangiocyte pathophysiology, and the endogenous mechanisms of biliary regeneration and repair. All of this complex and rapidly evolving knowledge coincides with an explosion of new technological advances in the area of regenerative medicine.
View Article and Find Full Text PDFUnlabelled: Fibrogenesis encompasses the deposition of matrix proteins, such as collagen I, by hepatic stellate cells (HSCs) that culminates in cirrhosis. Fibrogenic signals drive transcription of procollagen I, which enters the endoplasmic reticulum (ER), is trafficked through the secretory pathway, and released to generate extracellular matrix. Alternatively, disruption of procollagen I ER export could activate the unfolded protein response (UPR) and drive HSC apoptosis.
View Article and Find Full Text PDFBackground & Aims: Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs.
View Article and Find Full Text PDFDynamin-2 (Dyn2) is implicated in endocytosis of receptor tyrosine kinases, which contribute to hepatic stellate cell (HSC) activation and liver fibrosis. A point mutation converting lysine 44 of Dyn2 to alanine (Dyn2K44A) disrupts its GTPase activity. We hypothesized that Dyn2K44A expression in HSCs would decrease HSC activation and fibrogenesis in vivo by disrupting receptor tyrosine kinase endocytosis and signaling.
View Article and Find Full Text PDF