Publications by authors named "Thiago M Pasin"

S-adenosylmethionine (SAM) is most widely known as the biological methylating agent of methyltransferases and for generation of radicals by the iron-sulfur dependent Radical SAM enzymes. SAM also serves as a substrate in biosynthetic reactions that harvest the aminobutyrate moiety of the methionine, producing methylthioadenosine as a co-product. These reactions are found in the production of polyamines such as spermine, siderophores derived from nicotianamine, and opine metallophores staphylopine and pseudopaline, among others.

View Article and Find Full Text PDF

Daily agro-industrial waste, primarily cellulose, lignin, and hemicellulose, poses a significant environmental challenge. Harnessing lignocellulolytic enzymes, particularly endo-1,4-β-xylanases, for efficient saccharification is a cost-effective strategy, transforming biomass into high-value products. This study focuses on the cloning, expression, site-directed mutagenesis, purification, three-dimensional modeling, and characterization of the recombinant endo-1,4-β-xylanase (XlnA) from in .

View Article and Find Full Text PDF

Aspergillus species have been highlighted in enzyme production looking for industrial applications, notably, amylases are one of the most interesting enzymes. They are capable of hydrolyzing α-glycosidic linkages of starch and widely used in industrial processes to produce ethanol, glucose, and fructose syrup as well as in the textiles, detergents, and paper industries applications. In this context, this work aimed at the biochemical characterization of the glucoamylase from Aspergillus japonicus and its application in the bio-bleaching process of recycled paper.

View Article and Find Full Text PDF

Interest in chitin-degrading enzymes has grown over the years, and microbial chitinases are the most attractive and promising candidates for the control of plant pests (fungi and insects). Currently, there are many studies on chitinases produced by cultivable microorganisms; however, almost none of them have achieved acceptable applicability as a biopesticide in the field. Approximately 99% of the microorganisms from soil cannot be isolated by conventional culture-dependent methods, thus having an enormous biotechnological/genetic potential to be explored.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change leads to more extreme weather, like heatwaves and altered rainfall, affecting soil microbial communities, especially fungi, in ways that are not fully understood.
  • A field experiment in Brazil tested the effects of warming (2°C increase) and drought on the fungal community of tropical grassland soil, revealing that warming changed community structure while drought impacted diversity.
  • The study found drought increases fungal diversity by reducing dominant species and notably boosts harmful phytopathogenic fungi, suggesting that fungal communities are more sensitive to drought, potentially increasing soil-borne diseases.
View Article and Find Full Text PDF

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-β-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues.

View Article and Find Full Text PDF

Today, many microbial amylases are available commercially and they have almost completely replaced chemical hydrolysis in several industry processes. Amylases from microorganisms have a broad spectrum of industrial applications as they are more stable than amylases obtained from plants and animals. The objective of this work was to use potato baits in an Atlantic Forest remnant located in Ribeirão Preto, São Paulo, Brazil, in order to obtain amylase-producing fungi with potential for biotechnological application.

View Article and Find Full Text PDF

Microbial amylases are used to produce ethanol, glucose and can be applied in textiles products, detergents and other industries. This study aimed to determine the best carbon source concentration to induce the amylase production by A. japonicus, and its purification and biochemical characterization.

View Article and Find Full Text PDF

This study investigates the production of glucoamylase from Aspergillus phoenicis in Machado Benassi (MB) medium using 1% maltose as carbon source. The maximum amylase activity was observed after four days of cultivation, on static conditions at 30 °C. Glucoamylase production was induced by maltose and inhibited by different glucose concentrations.

View Article and Find Full Text PDF