The main cardiovascular disease risk associated with obesity is hypertension. The therapeutic use of photobiomodulation therapy (PBM) is suggested for the treatment of wound healing, osteoarthritis, and arterial diseases. However, few studies have measured how red laser (at 660 nm) acts over hypertension, and any of those studies used experimental obesity model.
View Article and Find Full Text PDFLasers Med Sci
November 2023
To evaluate whether the chronic effect of photobiomodulation therapy (PBM) on systolic arterial pressure (SAP) from two kidneys one clip (2 K-1C) hypertension animal models can cause a hypotensive effect. Serum levels of nitric oxide were also analyzed and the assessment of lipid peroxidation of the thoracic aorta artery. Male Wistar rats were used.
View Article and Find Full Text PDFLasers Med Sci
August 2022
The aim of this study was to evaluate the participation of nitric oxide (NO) in the hypotensive and vasorelaxation effect induced by PBM using an aluminum gallium arsenide (AlGaAs) diode laser (660 nm). Male Wistar rats were treated with the inhibitor of nitric oxide synthase (L-NAME). A red laser (660 nm; 63 J/cm; 56 s/point) was applied to the abdominal region at six different points.
View Article and Find Full Text PDFJ Pharm Pharm Sci
September 2019
Purpose: In endothelial cells, investigate if the soluble guanylate cyclase (sGC) activation or stimulation is able to potentiate the relaxation in vessels.
Methods: Aortic and coronary rings with and without endothelium were placed in a myograph and cumulative concentration-effect curves for DETA-NO or ataciguat were performed. Nitric oxide (NO) were measured by fluorescence or by selective electrode in human umbilical endothelial cells (HUVECs) in response to some treatments, including ataciguat, 8-Br-cGMP and A23187.
Background:: The endothelium is a monolayer of cells that extends on the vascular inner surface, responsible for the modulation of vascular tone. By means of the release of nitric oxide (NO), the endothelium has an important protective function against cardiovascular diseases.
Objective:: Verify if cis- [Ru(bpy)2(NO2)(NO)](PF6)2 (BPY) improves endothelial function and the sensibility of conductance (aorta) and resistance (coronary) to vascular relaxation induced by BPY.
Purpose: Verify if sodium nitroprusside (SNP) is able to improve endothelial function and if this effect is independent of nitric oxide (NO) release of the compound.
Methods: Normotensive (2K) and hypertensive (2K-1C) wistar rats were used. Intact endothelium aortas were placed in a myograph and incubated with SNP: 0.
Purpose: The ruthenium complex cis-[Ru(H-dcbpy-)2(Cl)(NO)] (DCBPY) is a nitric oxide (NO) donor and studies suggested that the ruthenium compounds can inactivate O2-. The aim of this study is to test if DCBPY can revert and/or prevent the endothelial dysfunction.
Methods: Normotensive (2K) and hypertensive (2K-1C) wistar rats were used.