We present a multi-point curvature sensor based on optical fiber specklegram measurements. Apart from the current approaches, the proposed system uses an ordinary multimode fiber excited with visible light as a reflection-type probe. Besides, this method discretizes the waveguide into segments connected by joints and assumes sequential bend events, simplifying the specklegram referencing for correlation analyses and avoiding laborious deep learning processing.
View Article and Find Full Text PDFCarbon nanodots (CNDs) are interesting materials due to their intrinsic fluorescence, electron-transfer properties, and low toxicity. Here, we report a sustainable, cheap, and scalable methodology to obtain CNDs from sugarcane syrup using a domestic microwave oven. The CNDs were characterized by infrared spectroscopy, dynamic light scattering, atomic force microscopy, absorption, and emission spectroscopies.
View Article and Find Full Text PDFFiber specklegram sensors (FSSs) traditionally use statistical methods to analyze specklegrams obtained from fibers for sensing purposes, but can suffer from limitations such as vulnerability to noise and lack of dynamic range. In this paper we demonstrate that deep learning improves the analysis of specklegrams for sensing, which we show here for both air temperature and water immersion length measurements. Two deep neural networks (DNNs); a convolutional neural network and a multi-layer perceptron network, are used and compared to a traditional correlation technique on data obtained from a multimode fiber exposed-core fiber.
View Article and Find Full Text PDFThe inception of photonic crystal fibers (PCFs) allowed for unprecedented tailoring of waveguide properties for specialty sensing probes. Exposed core microstructured fibers (ECFs) represent a natural evolution of the PCF design for practical liquid and gas sensing. Until now, to the best of our knowledge, only single-mode or few-modes ECFs have been explored.
View Article and Find Full Text PDFBiocompatible and resorbable optical fibres emerge as promising technologies for in vivo applications like imaging, light delivery for phototherapy and optogenetics, and localised drug-delivery, as well as for biochemical sensing, wherein the probe can be implanted and then completely absorbed by the organism. Biodegradable waveguides based on glasses, hydrogels, and silk have been reported, but most of these devices rely on complex fabrication procedures. In this sense, this paper proposes a novel structured optical fibre made of agarose, a transparent, edible material used in culture media and tissue engineering.
View Article and Find Full Text PDFA reusable memory capable polymer optical fiber (POF) strain sensor is reported. The fiber consists of an acrylonitrile butadiene styrene (ABS) core and polymethylmethacrylate cladding. The memory capability is derived from stress whitening due to crazing of the ABS core, which can be reversed by heating the fiber close to the ABS glass transition temperature.
View Article and Find Full Text PDF