We use real-time density functional theory on a real-space grid to calculate electronic excitations of bacteriochlorophyll chromophores of the light-harvesting complex 2 (LH2). Comparison with Gaussian basis set calculations allows us to assess the numerical trust range for computing electron dynamics in coupled chromophores with both types of techniques. Tuned range-separated hybrid calculations for one bacteriochlorophyll as well as two coupled ones are used as a reference against which we compare results from the adiabatic time-dependent local density approximation (TDLDA).
View Article and Find Full Text PDFLangmuir
July 2018
Novel periodic mesoporous organosilicas (PMOs) containing 1,4,5,8-Naphthalenediimide (NDI) chromophores as an integral part of the pore walls were synthesized in acidic conditions, in the presence of inorganic tetraethyl orthosilicate, using triblock copolymer surfactant Pluronic P-123 as a template. The NDI precursor, the bridged silsesquioxane N, N'-bis(3-triethoxysilylpropyl)-1,4,5,8-naphthalenediimide, was synthesized by reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with excess 3-aminopropyltriethoxysilane. A series of samples containing up to 19% (weight %) of NDI were prepared (the materials were labeled PMONDIs).
View Article and Find Full Text PDFA luminescent inorganic-organic hybrid material was synthesized by covalent immobilization of a europium bipyridine carboxylate complex on the inner pore walls of the mesoporous silica host MCM-41 using the grafting method. Guest-host binding was achieved through double functionalization of the host surface with organosilane reagents (trimethylsilyl, TMS, and aminopropyltriethoxysilane, APTES) followed by reaction of the active amino sites of the APTES residue with the ligand 2,2'-bipyridyl-6,6'-dicarboxylic acid. Addition of EuCl3 solution dissolved in ethanol results in the formation of an immobilized complex having the probable formula Eu(L)x(3 ≥ x ≥ 1)(H2O)y, whose detailed photophysical properties were investigated.
View Article and Find Full Text PDF