Publications by authors named "Thiago Acosta Oliveira"

Viticulture plays an important role in generating income for small farms globally. Historically, vineyards use large quantities of phytosanitary products, such as Bordeaux mixture [Ca(OH) + CuSO], to control plant diseases. These products result in the accumulation of copper (Cu) in the soil and increases the risk of transfer to water bodies.

View Article and Find Full Text PDF

Chemical communication relating to predation risk is a trait common among fish species. Prey fish under threat of predation can signal risk to conspecific fish, which then exhibit defensive responses. Fish also assess predation risk by visual cues and change their behavior accordingly.

View Article and Find Full Text PDF

In this article, we show that the tyrosine hydroxylase inhibitor α-Methyl-l-tyrosine (AMPT) decreased the responsiveness of the zebrafish stress axis to an acute stressful challenge. These effects were specific for responses to stimulation, since unstimulated (basal) cortisol levels were not altered by AMPT. Moreover, AMPT decreased the stress response 15min after stimulation, but not after that time period.

View Article and Find Full Text PDF

The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species.

View Article and Find Full Text PDF

Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.

View Article and Find Full Text PDF

In agriculture intensive areas, fishponds and natural water bodies located in close proximity to these fields receive water with variable amounts of agrichemicals. Consequently, toxic compounds reach nontarget organisms. For instance, aquatic organisms can be exposed to tebuconazole-based fungicides (TBF), glyphosate-based herbicides (GBH), and atrazine-based herbicides (ABH) that are potentially dangerous, which motivates the following question: Are these agrichemicals attractant or aversive to fish? To answer this question, adult zebrafish were tested in a chamber that allows fish to escape from or seek a lane of contaminated water.

View Article and Find Full Text PDF

Here, we show that individually housed zebrafish presented a reduced cortisol response to an acute stressor (persecution with a pen net for 120 s) compared to zebrafish housed in groups of 10. We hypothesized that the cortisol response to stress was reduced in individually housed zebrafish because they depend solely on their own perceptions of the stressor, whereas among grouped zebrafish, the stress response might be augmented by chemical and/or behavioral cues from the other members of the shoal. This hypothesis was based on previous described chemical communication of stress in fish as well on individual variation in stressor perception and potential individual differences in fish personality.

View Article and Find Full Text PDF

The presence of pharmaceutical products in the aquatic environment has been reported in several studies. However, the impact of these drugs on living organisms is still uncharacterized. Here, we investigated the effects of acute exposure to either diazepam or fluoxetine on the stress response in Danio rerio.

View Article and Find Full Text PDF

We studied the stress response of Rhamdia quelen fingerlings at 45, 90, 135 and 180 d following acute exposure to agrichemicals. Herein, we report the novel observation that acute exposure of fingerling-aged fish to a methyl parathion-based insecticide (MPBI) and to a tebuconazole-based fungicide (TBF) induced chronic inhibition of the stress response. In contrast, fish exposed to an atrazine-simazine-based herbicide (ASBH) recovered the stress response on day 45, and fish exposed to a glyphosate-based herbicide (GBH) did not present stress response inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Living zebrafish exhibit defensive behaviors when exposed to scents released by dead zebrafish, indicating they can detect danger from chemical cues.
  • The study confirms that these scents trigger an increase in cortisol levels in live zebrafish, suggesting a stress response similar to that observed in other species.
  • Both chemical cues from decaying flesh and alarm substances from damaged epidermal cells play a role in eliciting these stress and defensive responses, highlighting their importance for survival.
View Article and Find Full Text PDF

The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish.

View Article and Find Full Text PDF

In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects.

View Article and Find Full Text PDF

In many vertebrate species, including humans, the developmental stage directly influences an organism's reactivity to stress. For instance, fishes appear to exhibit "stress insensitive" periods early in development, which contributes to important alterations in stress responses. This phenomenon raises the important question of whether size or age influences fish stress responses, as there may be large discrepancies in size at any stage of ontogeny.

View Article and Find Full Text PDF

This study investigated differences in the cortisol response of fish at different developmental stages after exposure to an acute stressor. Three experiments using 126 fish each were performed using 3 different age groups of jundiá (Rhamdia quelen): fingerlings at 60 days of age, juveniles at 180 days, and adults at 360 days. In each experiment, the fish in each group were randomly distributed into either a handled experimental group or a non-handled control group.

View Article and Find Full Text PDF