Life-threatening invasive fungal infections represent an urgent threat to human health worldwide. The limited set of antifungal drugs has critical constraints such as resistance development and/or adverse side effects. One approach to overcome these limitations is to mimic naturally occurring antifungal peptides called defensins.
View Article and Find Full Text PDFSkin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin.
View Article and Find Full Text PDFEnvironmental quality standards (EQSs) have been established as desirable levels to be maintained for protection of human health and the conservation of the living environment by Basic Environment Law. EQSs in ambient air had been set for 10 substances (sulfur dioxide (SO(2)), carbon monoxide (CO), suspended particulate matter (SPM), nitrogen dioxide (NO(2)) and photochemical oxidants (Ox), benzene, tetrachloroethylene, trichloroethylene, dioxins and dichloromethane) and guideline values for 7 (acrylonitorile, vinyl chloride monomer, mercury, nickel compounds, 1,3-butadiene, chloroform and 1,2-dichloromethane) in Japan by 2009. EQSs for the classical (or traditional) air pollutants, SO(2), CO, SPM, NO(2) and Ox, were set according to the minimal requirement to protect human health, based on evidence from epidemiological studies conducted before the 1970s.
View Article and Find Full Text PDFChem Biol Interact
December 2010
Epidemiological studies have identified chronic alcohol consumption as a significant risk factor for cancers of the upper aerodigestive tract, including the oral cavity, pharynx, larynx and esophagus, and for cancer of the liver. Ingested ethanol is mainly oxidized by the enzymes alcohol dehydrogenase (ADH), cytochrome P-450 2E1 (CYP2E1), and catalase to form acetaldehyde, which is subsequently oxidized by aldehyde dehydrogenase 2 (ALDH2) to produce acetate. Polymorphisms of the genes which encode enzymes for ethanol metabolism affect the ethanol/acetaldehyde oxidizing capacity.
View Article and Find Full Text PDFHuman body might be exposed to acetaldehyde from smoking or occupational environment, which is known to be associated with cancer through the formation of DNA adducts, in particular, N2-ethylidene-2'- deoxyguanosine (N2-ethylidene-dG). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that contribute to the detoxification of acetaldehyde in human body. In this study, wild type (Aldh2+/+) and Aldh2KO (Aldh2-/-) mice were exposed to the air containing 0, 125, 500 ppm acetaldehyde for 2 weeks.
View Article and Find Full Text PDFToxicol Mech Methods
November 2009
Acetaldehyde is an intermediate of ethanol oxidation. It covalently binds to DNA, and is known as a carcinogen. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme that oxidizes acetaldehyde.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2009
Hepatitis B virus (HBV) and hepatitis C virus (HCV) often cause chronic liver disease. We hypothesized that environmental factors adversely impact the liver function in workers with these types of hepatitis. We used liver function tests including aspartate aminotransferase, alanine aminotransferase, and g -glutamyltransferase to evaluate whether hazardous work conditions increase the incidence of chronic liver disease among HBV and HCV infected workers.
View Article and Find Full Text PDFArch Environ Contam Toxicol
October 2009
There are too many chemical substances around our living space. However, the toxicity of most of them has not been reported, especially regarding their sensitizing potentials. We aimed to develop a simple in vitro method to quantitatively predict the sensitizing potentials of chemicals by measuring the fluorescence of chemical-human serum albumin (HSA) complexes.
View Article and Find Full Text PDFSome occupational and environmental chemicals cause allergic diseases. To prevent chemical allergies, it is essential to identify the chemical substances that cause sensitization and to eliminate such sensitizers from daily life. As an occupational countermeasure, information for evaluating sensitization of chemical substances is needed.
View Article and Find Full Text PDF