Publications by authors named "Thi Nhu-Y Le"

Our research elucidates the cleavage processes of the RNase III enzyme, DICER, which plays a crucial role in the production of small RNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Utilizing high-throughput dicing assays, we expose the bipartite pairing rule that dictates the cleavage sites of DICER. Furthermore, we decode the intricate recognition mechanism of the primary YCR motif and identify an analogous secondary YCR motif that influences DICER's cleavage choices.

View Article and Find Full Text PDF

The Microprocessor complex is crucial in microRNA (miRNA) biogenesis, as it processes primary miRNAs (pri-miRNAs) into precursor miRNAs. Here, we present a high-throughput, radioisotope-free protocol for studying pri-miRNA processing using randomized sequences. We describe steps for randomized substrate preparation, protein purification, processing assays, and DNA library construction for sequencing.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in gene silencing. The gene-silencing activity of miRNAs depends on their sequences and expression levels. The human RNase III enzyme DICER cleaves miRNA precursors (pre-miRNAs) to produce miRNAs, making it crucial for miRNA production and cellular miRNA functions.

View Article and Find Full Text PDF

The Microprocessor complex (MP) is a vital component in the biogenesis of microRNAs (miRNAs) in animals. It plays a crucial role in the biogenesis of microRNAs (miRNAs) in mammals as it cleaves primary miRNAs (pri-miRNAs) to initiate their production. The accurate enzymatic activity of MP is critical to ensuring proper sequencing and expression of miRNAs and their correct cellular functions.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies a noncanonical cleavage mechanism of the microprocessor complex (MP) that is responsible for processing certain pri-miRNAs, which the traditional model can't fully explain.
  • The researchers analyzed a large dataset of pri-miRNA sequences to uncover this new mechanism, which does not require key RNA and protein components needed in the canonical process.
  • This noncanonical mechanism is found to be conserved across various animal species and is particularly important in C. elegans, indicating a wider range of RNA substrates that the microprocessor can process, expanding our understanding of miRNA biogenesis.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) play critical roles in gene expression and numerous human diseases. The success of miRNA biogenesis is largely determined by the primary miRNA (pri-miRNA) processing by the DROSHA-DGCR8 complex, called Microprocessor. Here, we analysed the high-throughput pri-miRNA processing assays and secondary structures of pri-miRNAs to investigate the roles of bulges in the pri-miRNA processing.

View Article and Find Full Text PDF