Biosensors employing single-walled carbon nanotube field-effect transistors (SWCNT FETs) offer ultimate sensitivity. However, besides the sensitivity, a high selectivity is critically important to distinguish the true signal from interference signals in a non-controlled environment. This work presents the first demonstration of the successful integration of a novel peptide aptamer with a liquid-gated SWCNT FET to achieve highly sensitive and specific detection of Cathepsin E (CatE), a useful prognostic biomarker for cancer diagnosis.
View Article and Find Full Text PDFIn this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system.
View Article and Find Full Text PDF