Publications by authors named "Thi Lan-Huong Nguyen"

In the present study, the biosynthesis of stable silver nanoparticles (BioAgNPs) was accomplished successfully for the first time by using an aqueous extract derived from the buds of (SN) as both a reducing and a stabilizing agent. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) investigations revealed that the biosynthesized BioAgNPs were predominantly spherical with an average size of 10-30 nm. It was found that the outstanding stability of the BioAgNPs colloidal solution was assigned to the additive effect of the surrounding protective organic layer and the highly negatively charged surface of the nanoparticles.

View Article and Find Full Text PDF

We present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques.

View Article and Find Full Text PDF

Microplastics (MPs), which are ubiquitous, are no longer novel emerging pollutants, yet our knowledge of them is insufficient. This study investigates the prevalence of MPs and trace metals in sediment belonging to Ma River, Vietnam, and their interaction with various parameters, including nutrients such as total carbon (TC), total nitrogen (TN), and total phosphorus (TP), grain sizes, and MPs in surface water. The study revealed that the abundance of MPs in sediment (MPs/S) is relatively high (i.

View Article and Find Full Text PDF

This study presents a simple and green approach for the synthesis of fruit extract capped gold nanoparticles (SG-AuNPs). The SG-AuNPs samples prepared under the optimized conditions were characterized by various techniques (UV-Vis, XRD, FTIR, HR-TEM, EDX, DLS). The biosynthesized nanoparticles were then studied for the reduction of 2-nitrophenol (2-NP) and 3-nitrophenols (3-NP) and for colorimetric detection of Pb ions.

View Article and Find Full Text PDF

In this study, a simple, eco-friendly and low-cost approach was used to fabricate silver nanoparticles (AgNPs) from an aqueous extract of Gleditsia australis (GA) fruit. The nanoparticles synthesized in the optimal condition have an average size of 14 nm. The peroxidase-like activity of GA-AgNP in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in combination with hydrogen peroxide (HO) was investigated.

View Article and Find Full Text PDF

In this study, a ternary magnetically separable nanocomposite of silver nanoparticles (AgNPs) embedded in magnetic graphene oxide (Ag/FeO@GO) was designed and synthesized. Beta-cyclodextrin was used as a green reducing and capping agent for decorating of AgNPs on FeO@GO. The fabricated material was characterized using X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

In this work, a novel ternary FeO/CuO@C composite was fabricated using iron-doped copper 1,4-benzenedicarboxylate metal-organic frameworks as a self-sacrificing template. The morphological, structural, and optical properties of the prepared composite were determined by various techniques, and its photocatalytic behavior was investigated for degradation of ciprofloxacin under visible light irradiation. The FeO/CuO@C material presented a porous structure with a rough surface of about 4-20 μm, and was composed of the FeO/CuO nanocomposite uniformly distributed on a carbon support.

View Article and Find Full Text PDF

In the present study, cost-effective, and environmentally friendly fabrication of silver and gold nanoparticles was performed by using aqueous extract of waste corn-cob. The formation of the metallic nanoparticles (MNPs) was optimized by UV-Vis method. The phytoconstituents were responsible for reduction of silver and gold ions to silver nanoparticles (CC-AgNPs) and gold nanoparticles (CC-AuNPs) which were demonstrated by Fourier-transform infrared (FTIR) spectroscopy while formation of AgCl was attributed to the presence of chloride ions in the aqueous extract.

View Article and Find Full Text PDF

We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc₄-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc₄-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.

View Article and Find Full Text PDF