Publications by authors named "Therien M"

The conversion of absorbed sunlight to spatially separated electron-hole pairs is a crucial outcome of natural photosynthesis. Many organisms achieve near-unit quantum yields of charge separation (one electron-hole pair per incident photon) by dissipating as heat more than half of the light energy that is deposited in the primary donor. Might alternative choices have been made by Nature that would sacrifice quantum yield in favor of producing higher energy electron/hole pairs? Here, we use a multisite electron hopping model to address the kinetic and thermodynamic compromises that can be made in electron transfer chains, with the aim of understanding Nature's choices and opportunities in bioinspired energy-converting systems.

View Article and Find Full Text PDF

Because an individual single-walled carbon nanotube (SWNT) can absorb multiple photons, the exciton density within a single tube depends upon excitation conditions. In SWNT-based energy conversion systems, interactions between excitons and charges make it possible for multiple types of charge transfer reactions. We exploit a SWNT-molecular donor-acceptor hybrid system (-PBN(b)-Ph-PDI-[(6,5) SWNT]) that fixes spatial organization and stoichiometry of perylene diimide (PDI) electron acceptors on the nanotube surface, to elucidate how excitation fluence affects ultrafast charge separation (CS) and the nature of charge recombination (CR) dynamics triggered upon SWNT near-infrared excitation.

View Article and Find Full Text PDF
Article Synopsis
  • Coherence involves the correlations between waves and is crucial in understanding molecular behaviors in chemistry research.
  • The review highlights varying definitions and concepts of "coherence" and "quantum coherence," linking them to interference patterns and their complex nature.
  • By clarifying these definitions, the aim is to improve communication and understanding in the diverse field of molecular sciences.
View Article and Find Full Text PDF

Covalent bonding interactions determine the energy-momentum (-) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the - dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity.

View Article and Find Full Text PDF

The chirality-induced spin selectivity (CISS) effect allows thin-film layers of chiral conjugated molecules to function as spin filters at ambient temperature. Through solvent-modulated dropcasting of chiral l- and d-perylene diimide (PDI) monomeric building blocks, two types of aggregate morphologies, nanofibers and nanodonuts, may be realized. Spin-diode behavior is evidenced in the nanodonut structures.

View Article and Find Full Text PDF

Printing thin-film transistors (TFTs) using nanomaterials is a promising approach for future electronics. Yet, most inks rely on environmentally harmful solvents for solubilizing and postprint processing the nanomaterials. In this work, we demonstrate water-only TFTs printed from all-carbon inks of semiconducting carbon nanotubes (CNTs), conducting graphene, and insulating crystalline nanocellulose (CNC).

View Article and Find Full Text PDF
Article Synopsis
  • Printed carbon nanotube thin-film transistors (CNT-TFTs) are promising for flexible electronics but face challenges in printing the gate dielectric layer due to issues with film quality and uniformity.
  • This study examines three types of ionic dielectrics for use in CNT-TFTs: a polar polymer (PVDF-HFP), an ion gel, and crystalline nanocellulose (CNC), focusing on their formulation, printing process, and performance under stress.
  • Results indicate that each ionic dielectric offers different strengths: CNC performs best for low-voltage use, while the ion gel and elastomer provide greater stability under mechanical and electrical stress.
View Article and Find Full Text PDF

Control of the singlet-triplet energy gap (Δ) is central to realizing productive energy conversion reactions, photochemical reaction trajectories, and emergent applications that exploit molecular spin physics. Despite this, no systematic methods have been defined to tune Δ in simple molecular frameworks, let alone by an approach that also holds chromophore size and electronic structural parameters (such as the HOMO-LUMO gap) constant. Using a combination of molecular design, photophysical and potentiometric experiments, and quantum chemical analyses, we show that the degree of electron-electron repulsion in excited singlet and triplet states may be finely controlled through the substitution pattern of a simple porphyrin absorber, enabling regulation of relative electronically excited singlet and triplet state energies by the designed restriction of the electron-electron Coulomb () and exchange () interaction magnitudes.

View Article and Find Full Text PDF

Electronic waste can lead to the accumulation of environmentally and biologically toxic materials and is a growing global concern. Developments in transient electronics-in which devices are designed to disintegrate after use-have focused on increasing the biocompatibility, whereas efforts to develop methods to recapture and reuse materials have focused on conducting materials, while neglecting other electronic materials. Here, we report all-carbon thin-film transistors made using crystalline nanocellulose as a dielectric, carbon nanotubes as a semiconductor, graphene as a conductor and paper as a substrate.

View Article and Find Full Text PDF

Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers ( linked and linked ). While both and feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in and resulting in a localized exciton.

View Article and Find Full Text PDF

A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization.

View Article and Find Full Text PDF

An investigation of spin and conformational dynamics in a series of symmetric Cu-Cu porphyrin dimer solutions is presented using electron paramagnetic resonance (EPR) spectroscopy. Previous spectral simulations focused on the isotropic exchange interaction ( ) between the Cu centers. In this work, an additional line broadening parameter ( ) is explored in detail via variable temperature X-band EPR in liquid solution for several different structures.

View Article and Find Full Text PDF

A new series of strongly coupled oscillators based upon (porphinato)Pd, (porphinato)Pt, and bis(terpyridyl)ruthenium(II) building blocks is described. These , , , and chromophores feature bis(terpyridyl)Ru(II) moieties connected to the (porphinato)metal unit via an ethyne linker that bridges the 4'-terpyridyl and porphyrin macrocycle -carbon positions. Pump-probe transient optical data demonstrate sub-picosecond excited singlet-to-triplet-state relaxation.

View Article and Find Full Text PDF

The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, nonlinear optics, and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient paramagnetic states singularly well suited to quantify spin delocalization. Previous work proposed a means of extracting the absolute signs of the zero-field splitting (ZFS) parameters, and , and triplet sublevel populations by transient continuous wave, hyperfine measurements, and magnetophotoselection.

View Article and Find Full Text PDF

High quantum yield NIR fluorophores are rare. Factors that drive low emission quantum yields at long wavelength include the facts that radiative rate constants increase proportional to the cube of the emission energy, while nonradiative rate constants increase in an approximately exponentially with decreasing S-S energy gaps (in accordance with the energy gap law). This work demonstrates how the proquinoidal BTD building blocks can be utilized to minimize the extent of excited-state structural relaxation relative to the ground-state conformation in highly conjugated porphyrin oligomers, and shows that 4-ethynylbenzo[][1,2,5]thiadiazole () units that terminate -to- ethyne-bridged (porphinato)zinc () arrays, and 4,7-diethynylbenzo[][1,2,5]thiadiazole () spacers that are integrated into the backbone of these compositions, elucidate new classes of impressive NIR fluorophores.

View Article and Find Full Text PDF
Article Synopsis
  • Secondary metabolites, like the lipopeptide surfactin, influence the biocontrol capabilities of soil microbes and affect bacterial development, including biofilm formation.
  • In experiments, surfactin was found to be non-essential for the formation of pellicle biofilms and complex colony structures in the bacterium, though it did limit colony expansion.
  • The ability of these bacteria to colonize plant roots remained unaffected whether or not they produced surfactin, indicating that surfactin's role in biocontrol and plant promotion is not linked to biofilm formation.
View Article and Find Full Text PDF

protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions.

View Article and Find Full Text PDF

We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled.

View Article and Find Full Text PDF

Understanding factors that underpin the signs and magnitudes of electron spin-spin couplings in biradicaloids, especially those that are integrated into highly delocalized electronic structures, promises to inform the design of molecular spintronic systems. Using steady-state and variable temperature electron paramagnetic resonance (EPR) spectroscopy, we examine spin dynamics in symmetric, strongly π-conjugated bis[(porphinato)copper] (bis[PCu]) systems and probe the roles played by atom-specific macrocycle spin density, porphyrin-to-porphyrin linkage topology, and orbital symmetry on the magnitudes of electronic spin-spin couplings over substantial Cu-Cu distances. These studies examine the following: (i) to-linked bis[PCu] systems having oligoyne spacers, (ii) to-bridged bis[PCu] arrays in which the PCu centers are separated by a single ethynyl unit or multiple 5,15-diethynyl(porphinato)zinc(II) units, and (iii) the corresponding β-to-β-bridged bis[PCu] structures.

View Article and Find Full Text PDF

Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump-probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express MLCT state photophysics reminiscent of their heavy-metal analogs.

View Article and Find Full Text PDF

and are used in organic agriculture as an alternative to chemical pesticides to fight against phytopathogen organisms. These Gram-positive soil-dwelling bacteria are able to resist harsh conditions and survive by differentiating into endospores. Few studies have examined how bacterial populations change on plants over time, and whether they remain active or enter a dormant state.

View Article and Find Full Text PDF

A series of new π-stacked compounds, 1,8-bis(2',5'-dimethoxybenzene-1'-yl)naphthalene (), 1,4-bis(8'-(2″,5″-dimethoxybenzene-1″-yl)naphthalen-1'-yl)benzene (), and 1,8-bis(4'-(8″-(2‴,5‴-dimethoxybenzene-1‴-yl)naphthalen-1″-yl)benzene-1'-yl)naphthalene (), have been synthesized and characterized herein as precursor molecules of monocationic mixed-valence systems (MVSs). The three-dimensional geometries of these compounds were determined by X-ray crystallography. A near-orthogonal alignment of the naphthalene pillaring motif to the dimethoxybenzene redox center, or the phenylene spacer, imposes cofacial alignment of these units in a juxtaposed manner with sub-van der Waals interplanar distances.

View Article and Find Full Text PDF

We examine the relative magnitudes of electronic coupling in two face-to-face rigid and diastereomeric (porphinato)zinc(II)-quinone (PZn-Q) assemblies, and , in which the six quinonyl carbon atoms lie in virtually identical arrangements relative to the PZn plane at sub-van der Waals donor-acceptor (D-A) interplanar separations. Steady-state and time-resolved transient optical data and computational studies show that minor differences in relative D-A cofacial orientation give rise to disparate magnitudes for both photoinduced charge separation (CS) and thermal charge recombination (CR). Time-dependent density functional theory (TDDFT) computations illuminate the nature of direct charge transfer states and the electronic structural factors that give rise to these differential s.

View Article and Find Full Text PDF

Spin based properties, applications, and devices are typically related to inorganic ferromagnetic materials. The development of organic materials for spintronic applications has long been encumbered by its reliance on ferromagnetic electrodes for polarized spin injection. The discovery of the chirality-induced spin selectivity (CISS) effect, in which chiral organic molecules serve as spin filters, defines a marked departure from this paradigm because it exploits soft materials, operates at ambient temperature, and eliminates the need for a magnetic electrode.

View Article and Find Full Text PDF