We use numerically unbiased methods to show that the one-dimensional Hubbard model with periodically distributed on-site interactions already contains the minimal ingredients to display the phenomenon of magnetoresistance; i.e., by applying an external magnetic field, a dramatic enhancement on the charge transport is achieved.
View Article and Find Full Text PDFWith the purpose of investigating coexistence between magnetic order and superconductivity, we consider a model in which conduction electrons interact with each other, via an attractive Hubbard on-site coupling U, and with local moments on every site, via a Kondo-like coupling, J. The model is solved on a simple cubic lattice through a Hartree-Fock approximation, within a 'semi-classical' framework which allows spiral magnetic modes to be stabilized. For a fixed electronic density, n , the small J region of the ground state (T = 0) phase diagram displays spiral antiferromagnetic (SAFM) states for small U.
View Article and Find Full Text PDFThe interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model-a paradigm for strongly correlated fermions on a lattice-in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order.
View Article and Find Full Text PDFStrong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms.
View Article and Find Full Text PDFCold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases.
View Article and Find Full Text PDFWe characterize the Mott insulating regime of a repulsively interacting Fermi gas of ultracold atoms in a three-dimensional optical lattice. We use in situ imaging to extract the central density of the gas and to determine its local compressibility. For intermediate to strong interactions, we observe the emergence of a plateau in the density as a function of atom number, and a reduction of the compressibility at a density of one atom per site, indicating the formation of a Mott insulator.
View Article and Find Full Text PDFUltracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity. The Hubbard model--a simplified representation of fermions moving on a periodic lattice--is thought to describe the essential details of copper oxide superconductivity. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state.
View Article and Find Full Text PDFWe use determinantal quantum Monte Carlo simulations and numerical linked-cluster expansions to study thermodynamic properties and short-range spin correlations of fermions in the honeycomb lattice. We find that, at half filling and finite temperatures, nearest-neighbor spin correlations can be stronger in this lattice than in the square lattice, even in regimes where the ground state in the former is a semimetal or a spin liquid. The honeycomb lattice also exhibits a more pronounced anomalous region in the double occupancy that leads to stronger adiabatic cooling than in the square lattice.
View Article and Find Full Text PDFA major challenge in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temperature, and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling but only in a trap, due to the redistribution of entropy from the center to the metallic wings.
View Article and Find Full Text PDFOne of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-dimensional Hubbard models using determinantal quantum Monte Carlo simulations. We find that an entropy per particle approximately = ln2 is sufficient to observe the insulating gap in the repulsive Hubbard model at half-filling, or the pairing pseudogap in the attractive case.
View Article and Find Full Text PDF