The lateral hypothalamus (LH) is critically involved in the regulation of homeostatic energy balance. Some neurons in the LH express receptors for leptin (LepRb), a hormone known to increase energy expenditure and decrease energy intake. However, the neuroanatomical inputs to LepRb-expressing LH neurons remain unknown.
View Article and Find Full Text PDFAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex.
View Article and Find Full Text PDFEating disorders and obesity form a major health problem in Western Society. To be able to provide adequate treatment and prevention, it is necessary to understand the neural mechanisms underlying the development of eating disorders and obesity. Specific brain networks have been shown to be involved in feeding behavior.
View Article and Find Full Text PDFThe homeostatic need for sodium is one of the strongest motivational drives known in animals. Although the brain regions involved in the sensory detection of sodium levels have been mapped relatively well, data about the neural basis of the motivational properties of salt appetite, including a role for midbrain dopamine cells, have been inconclusive. Here, we employed a combination of fiber photometry, behavioral pharmacology and c-Fos immunohistochemistry to study the involvement of the mesocorticolimbic dopamine system in salt appetite in rats.
View Article and Find Full Text PDFHyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats.
View Article and Find Full Text PDFNeuroimage
August 2017
Linking neural circuit activation at whole-brain level to neuronal activity at cellular level remains one of the major challenges in neuroscience research. We set up a novel functional neuroimaging approach to map global effects of locally induced activation of specific midbrain projection neurons using chemogenetics (Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-technology) combined with pharmacological magnetic resonance imaging (phMRI) in the rat mesocorticolimbic system. Chemogenetic activation of DREADD-targeted mesolimbic or mesocortical pathways, i.
View Article and Find Full Text PDFAltered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans.
View Article and Find Full Text PDF