Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration.
View Article and Find Full Text PDFThe DNA hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve survival and transfusion independence in myelodysplastic syndrome (MDS) and enable a low intensity cytotoxic treatment for aged AML patients unsuitable for intensive chemotherapy, particularly in combination with novel agents. The proposed mechanism of AZA and DAC relies on active DNA replication and therefore patient responses are only observed after multiple cycles of treatment. Although extended dosing may provide the optimal scheduling, the reliance of injectable formulation of the drug limits it to intermittent treatment.
View Article and Find Full Text PDFThe caudal-related homeobox transcription factor CDX2 is expressed in leukemic cells but not during normal blood formation. Retroviral overexpression of Cdx2 induces AML in mice, however the developmental stage at which CDX2 exerts its effect is unknown. We developed a conditionally inducible Cdx2 mouse model to determine the effects of in vivo, inducible Cdx2 expression in hematopoietic stem and progenitor cells (HSPCs).
View Article and Find Full Text PDFJAK2V617F is the most common mutation in patients with BCR-ABL negative myeloproliferative neoplasms (MPNs). The eradication of JAK2V617F hematopoietic stem cells (HSCs) is critical for achieving molecular remissions and cure. We investigate the distinct effects of two therapies, ruxolitinib (JAK1/2 inhibitor) and interferon-alpha (IFN-α), on the disease-initiating HSC population.
View Article and Find Full Text PDFMyeloproliferative neoplasms (MPNs) are a group of blood cancers that arise following the sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells (HSPCs). We identify mutational cooperation between Jak2V617F expression and Dnmt3a loss that drives progression from early-stage polycythemia vera to advanced myelofibrosis. Using in vivo, clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) disruption of Dnmt3a in Jak2V617F knockin HSPC, we show that Dnmt3a loss blocks the accumulation of erythroid elements and causes fibrotic infiltration within the bone marrow and spleen.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both and were constitutively or conditionally deleted.
View Article and Find Full Text PDFThe C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35-42 amino acid repeat units that display high but not perfect identity. SV1 is a S.
View Article and Find Full Text PDFSSB1 and SSB2 are newly identified single-stranded (ss) DNA binding proteins that play a crucial role in genome maintenance in humans. We recently generated a knockout mouse model of Ssb1 and revealed its essential role for neonatal survival. Notably, we found compensatory up-regulation of Ssb2 protein levels in multiple tissues of conditional Ssb1(-/-) mice, suggesting functional compensation between these 2 proteins.
View Article and Find Full Text PDFGranulocyte colony-stimulating factor (G-CSF) is widely used clinically to prevent neutropenia after cytotoxic chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Autophagy, a process of cytoplasmic component recycling, maintains cellular homeostasis and protects the cell during periods of metabolic stress or nutrient deprivation. We have observed that G-CSF activates autophagy in neutrophils and HSCs from both mouse and human donors.
View Article and Find Full Text PDFEffective erythropoiesis requires an appropriate supply of iron and mechanisms regulating iron homeostasis and erythropoiesis are intrinsically linked. Iron dysregulation, typified by iron-deficiency anaemia and iron overload, is common in many clinical conditions and impacts the health of up to 30% of the world's population. The proteins transmembrane protease, serine 6 (TMPRSS6; also termed matriptase-2), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis, by regulating expression of the iron regulatory hormone hepcidin.
View Article and Find Full Text PDFStreptococcus pyogenes ranks among the main causes of mortality from bacterial infections worldwide. Currently there is no vaccine to prevent diseases such as rheumatic heart disease and invasive streptococcal infection. The streptococcal M protein that is used as the substrate for epidemiological typing is both a virulence factor and a vaccine antigen.
View Article and Find Full Text PDFInterferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated.
View Article and Find Full Text PDFA major challenge for Streptococcus pyogenes vaccine development is the identification of epitopes that confer protection from infection by multiple S. pyogenes M-types. Here we have identified and characterised the distribution of common variant sequences from individual repeat units of the C-repeat region (CRR) of M-proteins representing 77 different M-types.
View Article and Find Full Text PDFInfection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world.
View Article and Find Full Text PDF