The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs.
View Article and Find Full Text PDFSmall molecule inhibitors of the p53-MDM2 protein complex are under intense investigation in clinical trials as anti-cancer agents, including our first generation inhibitor NVP-CGM097. We recently described the rational design of a novel pyrazolopyrrolidinone core as a new lead structure and now we report on the synthesis and optimization of this to provide a highly potent lead compound. This new compound displayed excellent oral efficacy in our preclinical mechanistic in vivo model and marked a significant milestone towards the identification of our second generation clinical candidate NVP-HDM201.
View Article and Find Full Text PDFBackground And Purpose: Helix stapling enhances the activity of peptides that interact with a target protein in a helical conformation. These staples are also supposed to change the pharmacokinetics of the molecules and promote cytoplasmic targeting. We assessed the extent to which the pharmacokinetic characteristics are a function of the staple for a peptide inhibiting the interaction of p53 with the human double minute 2 (Hdm2) protein and differ from those of the standard cationic cell-penetrating peptide nona-arginine.
View Article and Find Full Text PDFNXL104 is a potent inhibitor of class A and C serine β-lactamases, including KPC carbapenemases. Native and NXL104-inhibited TEM-1 and P99 β-lactamases analyzed by liquid chromatography-electrospray ionization-time of flight mass spectrometry revealed that the inactivated enzymes formed a covalent adduct with NXL104. The principal inhibitory characteristics of NXL104 against TEM-1 and P99 β-lactamases were determined, including partition ratios, dissociation constants (K), rate constants for deactivation (k(2)), and reactivation rates.
View Article and Find Full Text PDFBackground: NXL104 is a novel-structure beta-lactamase inhibitor with potent activity against both class A and class C enzymes. Among the class A carbapenemases, KPC-type enzymes are now spreading rapidly and KPC-related carbapenemase resistance is an emerging phenomenon of great clinical importance. The activity of NXL104 against KPC beta-lactamases was examined.
View Article and Find Full Text PDFNXL101 is one of a new class of quinoline antibacterial DNA gyrase and topoisomerase IV inhibitors showing potent activity against gram-positive bacteria, including methicillin- and fluoroquinolone-resistant strains. NXL101 inhibited topoisomerase IV more effectively than gyrase from Escherichia coli, whereas the converse is true of enzymes from Staphylococcus aureus. This apparent target preference is opposite to that which is associated with most fluoroquinolone antibiotics.
View Article and Find Full Text PDFObjectives: Production of beta-lactamases is the main mechanism of beta-lactam resistance in Gram-negative bacteria. Despite the current use of clavulanic acid, sulbactam and tazobactam, the prevalence of class A and class C enzymes is increasing worldwide, demanding new beta-lactamase inhibitors. Here we report the antimicrobial properties of AVE1330A, a representative of a novel class of bridged bicyclico[3.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2004
We have developed a novel assay specific to MraY, which catalyzes the first membrane step in the biosynthesis of bacterial cell wall peptidoglycan. This was accomplished by using UDP-MurNAc-N(epsilon)-dansylpentapeptide, a fluorescent derivative of the MraY nucleotide substrate, and a partially purified preparation of MraY solubilized from membranes of an Escherichia coli overproducing strain. Two versions of the assay were developed, one consisting of the high-pressure liquid chromatography separation of the substrate and product (dansylated lipid I) and the other, without separation and adapted to the high-throughput format, taking advantage of the different fluorescence properties of the nucleotide and lipid I in the reaction medium.
View Article and Find Full Text PDF