Proc Natl Acad Sci U S A
March 2023
Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice.
View Article and Find Full Text PDFThe delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site.
View Article and Find Full Text PDFCOVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay.
View Article and Find Full Text PDFFrom cellular deposition of the HIV-1 capsid to integration of the viral genome, the capsid constitutes a primary target of a variety of host proteins that work to either promote or inhibit HIV-1 infection. Successful progression of HIV-1 infection depends on interactions between the capsid and host factors involved in stability, cellular transport, nuclear import, and genome integration. The virus must also guard its reverse-transcribing genome inside the capsid from host restriction factors that bind the capsid and suppress infection.
View Article and Find Full Text PDFDespite very low sequence homology, the major capsid proteins of double-stranded DNA (dsDNA) bacteriophages, some archaeal viruses, and the herpesviruses share a structural motif, the HK97 fold. Bacteriophage P22, a paradigm for this class of viruses, belongs to a phage gene cluster that contains three homology groups: P22-like, CUS-3-like, and Sf6-like. The coat protein of each phage has an inserted domain (I-domain) that is more conserved than the rest of the coat protein.
View Article and Find Full Text PDFThe P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri.
View Article and Find Full Text PDFCUS-3 is a P22-like tailed dsDNA bacteriophage that infects Escherichia coli serotype K1. The CUS-3 coat protein, which forms the icosahedral capsid, has a conserved HK97-fold but with a non-conserved accessory domain known as the insertion domain (I-domain). Sequence alignment of the coat proteins from CUS-3 and P22 shows higher sequence similarity for the I-domains (35 %) than for the HK97-cores, suggesting the I-domains play important functional roles.
View Article and Find Full Text PDF