Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol-enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage.
View Article and Find Full Text PDFCellular behavior is orchestrated by the complex interactions of a myriad of intracellular signal transduction pathways. To understand and investigate the role of individual components in such signaling networks, the availability of specific inhibitors is of paramount importance. We report the generation and validation of a novel variant of an RNA aptamer that selectively inhibits the mitogen-activated kinase pathway in neurons.
View Article and Find Full Text PDF