The intestinal microbiota and its metabolites are known to influence host metabolic health. However, little is known about the role of specific microbes. In this work, we used the minimal consortium Oligo-Mouse-Microbiota (OMM12) to study the function of under defined conditions in gnotobiotic mice.
View Article and Find Full Text PDFA bacterial strain, designated WCA-9-b2, was isolated from the caecal content of an 18-week-old obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate was rod-shaped, strictly anaerobic, spore-forming, non-motile and Gram-stain-positive, under the conditions tested. Colonies were irregular and non-pigmented.
View Article and Find Full Text PDFis a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM with or without .
View Article and Find Full Text PDFBackground: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice.
View Article and Find Full Text PDF