To reach the WHO goal of hepatitis C elimination, it is essential to identify the number of people unaware of their hepatitis C virus (HCV) infection and to investigate the effect of interventions on the disease transmission dynamics. In many high-income countries, one of the primary routes of HCV transmission is via contaminated needles shared by people who inject drugs (PWIDs). However, substantial underreporting combined with high uncertainty regarding the size of this difficult to reach population, makes it challenging to estimate the core indicators recommended by the WHO.
View Article and Find Full Text PDFDespite the wide application of dynamic models in infectious disease epidemiology, the particular modeling of variability in the different model components is often subjective rather than the result of a thorough model selection process. This is in part because inference for a stochastic transmission model can be difficult since the likelihood is often intractable due to partial observability. In this work, we address the question of adequate inclusion of variability by demonstrating a systematic approach for model selection and parameter inference for dynamic epidemic models.
View Article and Find Full Text PDFThe normal tissue complication probability (NTCP) is a measure for the estimated side effects of a given radiation treatment schedule. Here we use a stochastic logistic birth-death process to define an organ-specific and patient-specific NTCP. We emphasize an asymptotic simplification which relates the NTCP to the solution of a logistic differential equation.
View Article and Find Full Text PDF