Publications by authors named "Theresa S Rimmele"

GLT-1, the major glutamate transporter in the mammalian central nervous system, is expressed in presynaptic terminals that use glutamate as a neurotransmitter, in addition to astrocytes. It is widely assumed that glutamate homeostasis is regulated primarily by glutamate transporters expressed in astrocytes, leaving the function of GLT-1 in neurons relatively unexplored. We generated conditional GLT-1 knockout (KO) mouse lines to understand the cell-specific functions of GLT-1.

View Article and Find Full Text PDF

The glutamate transporter GLT-1 is highly expressed in astrocytes but also in neurons, primarily in axon terminals. We generated a conditional neuronal GLT-1 KO using synapsin 1-Cre (synGLT-1 KO) to elucidate the metabolic functions of GLT-1 expressed in neurons, here focusing on the cerebral cortex. Both synaptosomal uptake studies and electron microscopic immunocytochemistry demonstrated knockdown of GLT-1 in the cerebral cortex in the synGLT-1 KO mice.

View Article and Find Full Text PDF

Astrocytes clear glutamate and potassium, both of which are released into the extracellular space during neuronal activity. These processes are intimately linked with energy metabolism. Whereas astrocyte glutamate uptake causes cytosolic and mitochondrial acidification, extracellular potassium induces bicarbonate-dependent cellular alkalinization.

View Article and Find Full Text PDF

Glutamate and K+, both released during neuronal firing, need to be tightly regulated to ensure accurate synaptic transmission. Extracellular glutamate and K+ ([K+]o) are rapidly taken up by glutamate transporters and K+-transporters or channels, respectively. Glutamate transport includes the exchange of one glutamate, 3 Na+, and one proton, in exchange for one K+.

View Article and Find Full Text PDF

Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text].

View Article and Find Full Text PDF

Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals.

View Article and Find Full Text PDF

Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes.

View Article and Find Full Text PDF