Arch Otolaryngol Head Neck Surg
September 2008
Objective: To investigate whether the mechanism for the reversal of ABCG2 (also known as ABCP, MXR, and BCRP)-mediated drug resistance by imatinib mesylate (Gleevec, STI571; Novartis Pharmaceuticals Corp, East Hanover, New Jersey) is caused by the downregulation of Akt kinase. The adenosine triphosphatase-binding cassette protein ABCG2 has been suggested to be involved in the resistance against various anticancer drugs. Recent studies show that imatinib reverses ABCG2-mediated drug resistance to topotecan hydrochloride and SN-38.
View Article and Find Full Text PDFObjective: The objective of this study was to determine whether STI-571 (Gleevec; imatinib mesylate) could sensitize established head and neck squamous cell carcinoma (HNSCC) cell lines to the effects of cisplatin.
Methods: Western blot analysis and immunofluorescence were used to examine the expression of the tyrosine kinases that are known targets of Gleevec, including c-kit, c-Abl, and platelet-derived growth factor receptor, on the cell lines, and immunohistochemistry was performed to determine the expression of these kinases in human HNSCC tissue. Once these targets were confirmed, clonogenic cell survival assays were performed to determine the effect STI-571 had on growth and proliferation when used in combination with cisplatin compared with STI-571 alone or cisplatin alone.
Objectives: The objectives of this study were to determine the effects of Gleevec on p63 expression in head and neck squamous cell carcinoma (HNSCC) cell lines and to investigate the role of Gleevec in regulating p63 stabilization under DNA-damaging conditions.
Methods: Immunohistochemical staining was performed to determine p63 expression in HNSCC tissue. Annexin V staining was used to assess the effects of p63 on early apoptosis.
Objective: To identify the presence of side population (SP) cells in established head and neck squamous carcinoma cell (HNSCC) lines and to determine the role of EGFR in the regulation of the side population of these cells.
Methods: SP cells were identified using flow cytometry analysis by the ability of these cells to extrude the Hoechst 33342 dye via the drug transporter BCRP1/ABCG2. Effect of EGFR on the side population was determined also by difference in Hoechst extrusion and by immunofluorescence.