Publications by authors named "Theresa M Russell"

Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent advancements in aptamer chemistry enable the development of innovative tools for detecting proteins using a method involving immobilized SOMAmers labeled with a nitroxide radical.
  • - When a protein binds to the SOMAmer, it changes the rotational mobility of the attached spin label, which can be measured using electron paramagnetic resonance (EPR) spectroscopy.
  • - The study highlights a specific assay combining spin-labeled SOMAmers and fluorescence detection through diamond nitrogen-vacancy centers, offering a versatile method for transforming protein binding events into detectable magnetic signals.
View Article and Find Full Text PDF

Direct pathogen detection in blood to diagnose active tuberculosis (TB) has been difficult due to low levels of circulating antigens or due to the lack of specific, high-affinity binding reagents and reliable assays with adequate sensitivity. We sought to determine whether slow off-rate modified aptamer (SOMAmer) reagents with subnanomolar affinity for proteins (antigens 85A, 85B, 85C, GroES, GroEL2, DnaK, CFP10, KAD, CFP2, RplL, and Tpx) could be useful to diagnose tuberculosis. When incorporated into the multiplexed, array-based proteomic SOMAscan assay, limits of detection reached the subpicomolar range in 40% serum.

View Article and Find Full Text PDF

New non-sputum biomarker tests for active tuberculosis (TB) diagnostics are of the highest priority for global TB control. We performed in-depth proteomic analysis using the 4,000-plex SOMAscan assay on 1,470 serum samples from seven countries where TB is endemic. All samples were from patients with symptoms and signs suggestive of active pulmonary TB that were systematically confirmed or ruled out for TB by culture and clinical follow-up.

View Article and Find Full Text PDF

HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA).

View Article and Find Full Text PDF

Borrelia burgdorferi synthesizes an HtrA protease (BbHtrA) which is a surface-exposed, conserved protein within Lyme disease spirochetes with activity toward CheX and BmpD of Borrelia spp, as well as aggrecan, fibronectin and proteoglycans found in skin, joints and neural tissues of vertebrates. An antibody response against BbHtrA is observed in Lyme disease patients and in experimentally infected laboratory mice and rabbits. Given the surface location of BbHtrA on B.

View Article and Find Full Text PDF

Understanding the functions of multi-cellular organs in terms of the molecular networks within each cell is an important step in the quest to predict phenotype from genotype. B-lymphocyte population dynamics, which are predictive of immune response and vaccine effectiveness, are determined by individual cells undergoing division or death seemingly stochastically. Based on tracking single-cell time-lapse trajectories of hundreds of B cells, single-cell transcriptome, and immunofluorescence analyses, we constructed an agent-based multi-modular computational model to simulate lymphocyte population dynamics in terms of the molecular networks that control NF-κB signaling, the cell cycle, and apoptosis.

View Article and Find Full Text PDF

The Lyme disease spirochaete, Borrelia burgdorferi, causes damage to diverse host tissues and induces inflammation but the mechanisms of injury are poorly understood. We recently reported that a surface-exposed B. burgdorferi protease, which is expressed during human disease and is conserved within the major Lyme disease spirochaete species, degrades the extracellular matrix proteoglycan, aggrecan.

View Article and Find Full Text PDF

A novel method of culturing spirochetes from the serum of U.S. Lyme disease patients was recently reported by Sapi and colleagues to have 94% sensitivity and 100% specificity for Borrelia species as assessed by microscopy and DNA sequence analysis of the pyrG gene (E.

View Article and Find Full Text PDF

Connective tissues are the most common area of colonization for the Lyme disease spirochaete Borrelia burgdorferi. Colonization is aided by the interaction between numerous bacterial adhesins with components of the extracellular matrix (ECM). Here we describe a novel interaction between B.

View Article and Find Full Text PDF