Publications by authors named "Theresa J O'Sullivan"

Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 () for the treatment of Alzheimer's disease. A key component of the design involved a 2,5--tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work.

View Article and Find Full Text PDF

The aspartyl protease β-secretase, or BACE, has been demonstrated to be a key factor in the proteolytic formation of Aβ-peptide, a major component of plaques in the brains of Alzheimer's disease (AD) patients, and inhibition of this enzyme has emerged as a major strategy for pharmacologic intervention in AD. An X-ray-based fragment screen of Pfizer's proprietary fragment collection has resulted in the identification of a novel BACE binder featuring spiropyrrolidine framework. Although exhibiting only weak inhibitory activity against the BACE enzyme, the small compound was verified by biophysical and NMR-based methods as a bona fide BACE inhibitor.

View Article and Find Full Text PDF

Replacement of the central, para-substituted fluorophenyl ring in the γ-secretase inhibitor 1 (BMS-708,163) with the bicyclo[1.1.1]pentane motif led to the discovery of compound 3, an equipotent enzyme inhibitor with significant improvements in passive permeability and aqueous solubility.

View Article and Find Full Text PDF
Article Synopsis
  • A study focused on optimizing N-arylsulfonamide-based γ-secretase inhibitors found that the lead compound's poor stability was due to oxidation by liver enzymes.
  • Researchers modified the compound's structure to lower its fat-solubility, leading to several new variants with better stability and lower metabolism rates.
  • A promising 3-substituted oxetane compound showed improved effectiveness in reducing Aβ levels in preliminary animal tests, highlighting the potential of this new structural approach.
View Article and Find Full Text PDF

The discovery, synthesis and SAR of a novel series of 3-benzyl-1,3-oxazolidin-2-ones as positive allosteric modulators (PAMs) of mGluR2 is described. Expedient hit-to-lead work on a single HTS hit led to the identification of a ligand-efficient and structurally attractive series of mGluR2 PAMs. Human microsomal clearance and suboptimal physicochemical properties of the initial lead were improved to give potent, metabolically stable and orally available mGluR2 PAMs.

View Article and Find Full Text PDF

Low molecular weight peptidomimetic compounds based on O-malonyl tyrosine and O-carboxymethyl salicylic acid are potent inhibitors of PTP1B. Modifications of the N-terminal Boc-Phe moiety were undertaken in an effort to improve physical chemical properties and to achieve cellular activity. Although Phe ultimately proved to be the optimal N-terminal amino acid, several viable replacements for the Boc group were identified, two of which afforded analogues that were effective at enhancing the insulin-stimulated uptake of 2-deoxyglucose by L6 myocytes.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling in part by dephosphorylating key tyrosine residues within the regulatory domain of the beta-subunit of the insulin receptor (IR), thereby attenuating receptor tyrosine kinase activity. Inhibition of PTP1B is therefore anticipated to improve insulin resistance and has recently become the focus of discovery efforts aimed at identifying new drugs to treat type II diabetes. We previously reported that the tripeptide Ac-Asp-Tyr(SO(3)H)-Nle-NH(2) is a surprisingly effective inhibitor of PTP1B (K(i) = 5 microM).

View Article and Find Full Text PDF