The sequential bond dissociation energies (BDEs) of Ba(2+)(H2O)x complexes, where x = 1-8, are determined using threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. The electrospray ionization source generates complexes ranging in size from x = 6 to x = 8 with smaller complexes, x = 1-5, formed by an in-source fragmentation technique. The only products observed result from sequential loss of water ligands.
View Article and Find Full Text PDF7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms.
View Article and Find Full Text PDFThe first experimentally determined bond dissociation energies for losing water from Fe(2+)(H(2)O)(n) complexes, n = 4-11, are measured using threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer coupled to an electrospray ionization source that forms thermalized complexes. In this technique, absolute cross-sections for dissociation induced by collisions with Xe at systematically varied kinetic energies are obtained. After accounting for multiple collisions, kinetic shifts, and energy distributions, these cross-sections are analyzed to yield the energy thresholds for losing one, two, or three water ligands at 0 K.
View Article and Find Full Text PDFThe gas-phase structures of singly and doubly charged complexes involving transition metal cations, Zn and Cd, bound to the amino acid histidine (His) as well as deprotonated His (His-H) are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser. IRPMD spectra are measured for CdCl(+)(His), [Zn(His-H)](+), [Cd(His-H)](+), Zn(2+)(His)(2), and Cd(2+)(His)(2) in the 550-1800 cm(-1) range. These studies are complemented by quantum mechanical calculations of the predicted linear absorption spectra at the B3LYP/6-311+G(d,p) and B3LYP/Def2TZVP levels.
View Article and Find Full Text PDF