Publications by authors named "Theresa Hefferan"

Context: Type VIII osteogenesis imperfecta (OI; OMIM 601915) is a recessive form of lethal or severe OI caused by null mutations in P3H1, which encodes prolyl 3-hydroxylase 1.

Objectives: Clinical and bone material description of non-lethal type VIII OI.

Design: Natural history study of type VIII OI.

View Article and Find Full Text PDF

The presentation of hypophosphatasia (HPP) diagnosed in adults demonstrates a wide range of clinical manifestations, many of which are nonspecific. We sought to assess clinical characteristics of adult HPP by evaluation of Mayo Clinic Rochester adults diagnosed with HPP from 1976 through 2008. Subjects were identified by diagnostic code or medical records.

View Article and Find Full Text PDF

Treatment of large segmental bone defects remains an unsolved clinical challenge, despite a wide array of existing bone graft materials. This project was designed to rapidly assess and compare promising biodegradable osteoconductive scaffolds for use in the systematic development of new bone regeneration methodologies that combine scaffolds, sources of osteogenic cells, and bioactive scaffold modifications. Promising biomaterials and scaffold fabrication methods were identified in laboratories at Rutgers, MIT, Integra Life Sciences, and Mayo Clinic.

View Article and Find Full Text PDF

Introduction: This project was designed to test the hypothesis that rapid intraoperative processing of bone marrow based on hyaluronan (HA) could be used to improve the outcome of local bone regeneration if the concentration and prevalence of marrow-derived connective tissue progenitors (CTPs) could be increased and nonprogenitors depleted before implantation.

Methods: HA was used as a marker for positive selection of marrow-derived CTPs using magnetic separation (MS) to obtain a population of HA-positive cells with an increased CTP prevalence. Mineralized cancellous allograft (MCA) was used as an osteoconductive carrier scaffold for loading of HA-positive cells.

View Article and Find Full Text PDF

Development of novel therapeutic approaches to repair fracture non-unions remains a critical clinical necessity. We evaluated the capacity of human embryonic stem cell (hESC)-derived mesenchymal stem/stromal cells (MSCs) to induce healing in a fracture non-union model in rats. In addition, we placed these findings in the context of parallel studies using human bone marrow MSCs (hBM-MSCs) or a no cell control group (n = 10-12 per group).

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is most often caused by mutations in the type I procollagen genes (COL1A1/COL1A2). We identified two children with substitutions in the type I procollagen C-propeptide cleavage site, which disrupt a unique processing step in collagen maturation and define a novel phenotype within OI. The patients have mild OI caused by mutations in COL1A1 (Patient 1: p.

View Article and Find Full Text PDF

In this study we have compared the effects of negative and positive fixed charges on chondrocyte behavior in vitro. Electrical charges have been incorporated into oligo(poly(ethylene glycol) fumarate) (OPF) using small charged monomers such as sodium methacrylate (SMA) and (2-(methacryloyloxy) ethyl)-trimethyl ammonium chloride (MAETAC) to produce negatively and positively charged hydrogels, respectively. The physical and electrical properties of the hydrogels were characterized by measuring and calculating the swelling ratio and zeta potential, respectively.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2-induced bone regeneration could be enhanced by systemic administration of PTH (1-34). Empty or BMP-2-loaded poly(lactic-co glycolic acid)/poly(propylene fumarate)/gelatin composites were implanted subcutaneously and in femoral defects in rats (n = 9).

View Article and Find Full Text PDF

Loeys-Dietz syndrome (LDS, OMIM # 609192) caused by heterozygous mutations in TGFBR1 and TGFBR2 has recently been described as an important cause of familial aortic aneurysms. These patients have craniofacial and skeletal features that overlap with the Marfan syndrome (MFS), and more importantly, have significant vascular fragility as is seen in MFS and Ehlers-Danlos syndrome Type IV (EDS-IV). The skeletal phenotype with respect to low bone mineral density and skeletal fragility is not clear.

View Article and Find Full Text PDF

Hydrogels are potentially useful for many purposes in regenerative medicine including drug and growth factor delivery, as single scaffold for bone repair or as a filler of pores of another biomaterial in which host mesenchymal progenitor cells can migrate in and differentiate into matrix-producing osteoblasts. Collagen type I is of special interest as it is a very important and abundant natural matrix component. The purpose of this study was to investigate whether rat bone marrow stromal cells (rBMSCs) are able to adhere to, to survive, to proliferate and to migrate in collagen type I hydrogels and whether they can adopt an osteoblastic fate.

View Article and Find Full Text PDF

Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1).

View Article and Find Full Text PDF

In this study, the bioactive effects of poly(ethylene glycol) (PEG) sebacic acid diacrylate (PEGSDA) hydrogels with or without RGD peptide modification on osteogenic differentiation and mineralization of marrow stromal cells (MSCs) were examined. In a separate experiment, the ability of PEGSDA hydrogel to serve as a delivery vehicle for bone morphogenetic protein 2 (BMP-2) was also investigated. As a scaffold, the attachment and proliferation of MSCs on PEGSDA hydrogel scaffolds with and without RGD peptide modification was similar to the control, tissue culture polystyrene.

View Article and Find Full Text PDF

Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation.

View Article and Find Full Text PDF

Non-invasive imaging can provide essential information for the optimization of new drug delivery-based bone regeneration strategies to repair damaged or impaired bone tissue. This study investigates the applicability of nuclear medicine and radiological techniques to monitor growth factor retention profiles and subsequent effects on bone formation. Recombinant human bone morphogenetic protein-2 (BMP-2, 6.

View Article and Find Full Text PDF

The purpose of this study was to develop and validate a screening method based on scintillation probes for the simultaneous evaluation of in vivo growth factor release profiles of multiple implants in the same animal. First, we characterized the scintillation probes in a series of in vitro experiments to optimize the accuracy of the measurement setup. The scintillation probes were found to have a strong geometric dependence and experience saturation effects at high activities.

View Article and Find Full Text PDF

The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and microcomputed tomography analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 wk of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR.

View Article and Find Full Text PDF

This study describes investigation of porous photocrosslinked oligo[(polyethylene glycol) fumarate] (OPF) hydrogels as potential matrix for osteoblastic differentiation of marrow stromal cells (MSCs). The porosity and interconnectivity of porous hydrogels were assessed using magnetic resonance microscopy (MRM) as a noninvasive investigative tool that could image the water construct inside the hydrogels at a high-spatial resolution. MSCs were cultured onto the porous hydrogels and cell number was assessed using PicoGreen DNA assay.

View Article and Find Full Text PDF

Introduction: The metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A) functions to enhance local insulin-like growth factor (IGF)-I bioavailability through cleavage of inhibitory IGF binding proteins. Because IGF-I is an important regulator of skeletal growth and remodeling and PAPP-A is highly expressed by osteoblastic cells, we hypothesized that, in the absence of PAPP-A, bone physiology would be compromised because of a blunting of local IGF-I action even in the presence of normal circulating IGF-I levels.

Materials And Methods: pQCT, muCT, histomorphometry, and mechanical strength testing were performed on bones from PAPP-A knockout (KO) mice and wildtype (WT) littermates at 2-12 mo of age.

View Article and Find Full Text PDF

Novel biodegradable poly(ethylene glycol) (PEG) based hydrogels, namely, PEG sebacate diacrylate (PEGSDA) were synthesized, and their properties were evaluated. Chemical structures of these polymers were confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopy. After photopolymerization, the dynamic shear modulus of the hydrogels was up to 0.

View Article and Find Full Text PDF

Intermittent treatment with parathyroid hormone (PTH) increases bone formation and prevents bone loss in hindlimb-unloaded (HLU) rats. However, the mechanisms of action of PTH are incompletely known. To explore possible interactions between weight bearing and PTH, we treated 6-mo-old weight-bearing and HLU rats with a human therapeutic dose (1 microg.

View Article and Find Full Text PDF

A novel self-cross-linkable and biodegradable macromer, poly(caprolactone fumarate) (PCLF), has been developed for guided bone regeneration. This macromer is a copolymer of fumaryl chloride, which contains double bonds for in-situ cross-linking, and poly(epsilon-caprolactone), which has a flexible chain to facilitate self-cross-linkability. PCLF was characterized with Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and gel permeation chromatography.

View Article and Find Full Text PDF

Background: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both.

View Article and Find Full Text PDF