Publications by authors named "Theresa Firsching"

Introduction: The emergence of new SARS-CoV-2 variants, capable of escaping the humoral immunity acquired by the available vaccines, together with waning immunity and vaccine hesitancy, challenges the efficacy of the vaccination strategy in fighting COVID-19. Improved therapeutic strategies are urgently needed to better intervene particularly in severe cases of the disease. They should aim at controlling the hyperinflammatory state generated on infection, reducing lung tissue pathology and inhibiting viral replication.

View Article and Find Full Text PDF

Introduction: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease.

View Article and Find Full Text PDF

Mechanisms of epithelial renewal in the alveolar compartment remain incompletely understood. To this end, we aimed to characterize alveolar progenitors. Single-cell RNA-sequencing (scRNA-seq) analysis of the HTII-280/EpCAM population from adult human lung revealed subclusters enriched for adult stem cell signature (ASCS) genes.

View Article and Find Full Text PDF

Cell proliferation is a fundamental criterion in the assessment of malignant progression of many tumours and an essential parameter in several grading schemes. However, proliferation may be dependent on patient age and other variables, as shown in normal tissues, cultured cells and human neoplasms. We thus hypothesized that age or other patient or tumour-related parameters might generally affect proliferation in canine neoplasms, which might be of value for optimizing prognostic algorithms.

View Article and Find Full Text PDF

The dramatic global consequences of the coronavirus disease 2019 (COVID-19) pandemic soon fueled quests for a suitable model that would facilitate the development and testing of therapies and vaccines. In contrast to other rodents, hamsters are naturally susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the Syrian hamster () rapidly developed into a popular model. It recapitulates many characteristic features as seen in patients with a moderate, self-limiting course of the disease such as specific patterns of respiratory tract inflammation, vascular endothelialitis, and age dependence.

View Article and Find Full Text PDF

Vaccines are instrumental and indispensable in the fight against the COVID-19 pandemic. Several recent SARS-CoV-2 variants are more transmissible and evade infection- or vaccine-induced protection. We constructed live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and showed that the lead candidate, designated sCPD9, protects Syrian hamsters from a challenge with ancestral virus.

View Article and Find Full Text PDF

With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants.

View Article and Find Full Text PDF

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. ). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells.

View Article and Find Full Text PDF

Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a deadly condition characterized by progressive respiratory dysfunction. Exacerbations due to airway infections are believed to promote disease progression, and presence of in the lung microbiome has been associated with the progression of IPF and mortality. The aim of this study was to analyze the effect of lung fibrosis on susceptibility to pneumococcal pneumonia and bacteremia.

View Article and Find Full Text PDF

Background: Community-acquired pneumonia and associated sepsis cause high mortality despite antibiotic treatment. Uncontrolled inflammatory host responses contribute to the unfavorable outcome by driving lung and extrapulmonary organ failure. The complement fragment C5a holds significant proinflammatory functions and is associated with tissue damage in various inflammatory conditions.

View Article and Find Full Text PDF

Several veterinary faculties have integrated virtual microscopy into their curricula in recent years to improve and refine their teaching techniques. The many advantages of this recent technology are described in the literature, including remote access and an equal and constant slide quality for all students. However, no study has analyzed the change of perception toward virtual microscopy at different time points of students' academic educations.

View Article and Find Full Text PDF