Publications by authors named "Theresa E Gratsch"

Embryonic stem (ES) cells hold promise to treat a variety of disease. The major obstacle is to determine the requirements that will drive these cells to a particular lineage. Two approaches to examine lineage commitment are the addition of growth factors or directed differentiation of ES cells.

View Article and Find Full Text PDF

Elucidating the complex combinations of growth factors and signaling molecules that maintain pluripotency or, alternatively, promote the controlled differentiation of human embryonic stem cells (hESCs) has important implications for the fundamental understanding of human development, devising cell replacement therapies, and cancer cell biology. hESCs are commonly grown on irradiated mouse embryonic fibroblasts (MEFs) or in conditioned medium from MEFs. These culture conditions interfere with many experimental conclusions and limit the ability to perform conclusive proteomics studies.

View Article and Find Full Text PDF

RNAi offers the opportunity to examine the role in postimplantation development of genes that cause preimplantation lethality and to create allelic series of targeted embryos. We have delivered constituitively expressed short hairpin (sh) RNAs to pregnant mice during the early postimplantation period of development and observed gene knockdown and defects that phenocopy the null embryo. We have silenced genes that have not yet been "knocked out" in the mouse (geminin and Wnt8b), those required during earlier cleavage stages of development (nanog), and genes required at implantation (Bmp4, Bmp7) singly and in combination (Bmp4 + Bmp7), and obtained unique phenotypes.

View Article and Find Full Text PDF

Pluripotent embryonic stem (ES) cells are an important model system to examine gene expression and lineage segregation during differentiation. One powerful approach to target and inhibit gene expression, RNAi, has been applied to ES cells with the goal of teasing out the cascades of gene expression/repression that shape the early embryo. In this chapter, we describe the current understanding of the mechanisms of gene silencing by small hairpin RNAs, as well as controls and caveats to using this approach in ES cells.

View Article and Find Full Text PDF

Short, hairpin RNA (shRNA) directed against bone morphogenetic protein 4 (Bmp-4) was delivered to early postimplantation staged mouse embryos via tail vein injection of pregnant dams. As early as 24 h postinjection, embryos expressed a DsRed marker and later exhibited defects of neural fold elevation and closure and of cardiac morphogenesis. Immunohistochemical analysis of sectioned embryos indicated that Bmp-4 protein was depleted and gene expression analysis indicated there was a reduction in Bmp-4 mRNA and an upregulation of the Bmp-4 antagonists, noggin and chordin, in embryos exposed to the shRNA, but not in control embryos.

View Article and Find Full Text PDF

To examine the role of secreted signaling molecules and neurogenic genes in early development, we have developed a culture system for the controlled differentiation of mouse embryonic stem (ES) cells. In the current investigation, two of the earliest identified BMP antagonists/neural-inducing factors, noggin and chordin, were expressed in pluripotent mouse ES cells. Neurons were present as early as 24 h following transfection of ES cells with a pCS2/noggin expression plasmid, with differentiation peaking at 72 h.

View Article and Find Full Text PDF