Axonal repair is critical for functional recovery after injury of the CNS. We previously reported that neuronal deletion exhibits an age-dependent decline in promoting axon regeneration from the corticospinal tract (CST). How sprouting of uninjured axons, a naturally occurring form of axonal repair, is impacted by age is unknown.
View Article and Find Full Text PDFWe report on the successful delivery of the Cre recombinase enzyme in the neural cells of mice in vivo by simple coinjection with peptides derived from HIV-TAT. Cre delivery activates the expression of a reporter gene in both neurons and astrocytes of the cortex without tissue damage and with a transduction efficiency that parallels or exceeds that of a commonly used adeno-associated virus. Our data indicate that the delivery peptides mediate efficient endosomal leakage and cytosolic escape in cells that have endocytosed Cre.
View Article and Find Full Text PDFThe age of incidence of spinal cord injury (SCI) and the average age of people living with SCI is continuously increasing. However, SCI is extensively modeled in young adult animals, hampering translation of research to clinical applications. While there has been significant progress in manipulating axon growth after injury, the impact of aging is still unknown.
View Article and Find Full Text PDFIt has been reported that children may respond better than adults to a spinal cord injury (SCI) of similar severity. There are known biomechanical differences in the developing spinal cord that may contribute to this "infant lesion effect," but the underlying mechanisms are unknown. Using immunohistochemistry, we have previously demonstrated a different injury progression and immune cell response after a mild thoracic contusion SCI in infant rats, as compared to adult rats.
View Article and Find Full Text PDFIn the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete.
View Article and Find Full Text PDFThere exists a trend for a better functional recovery from spinal cord injury (SCI) in younger patients compared to adults, which is also reported for animal studies; however, the reasons for this are yet to be elucidated. The post injury tissue microenvironment is a complex milieu of cells and signals that interact on multiple levels. Inflammation has been shown to play a significant role in this post injury microenvironment.
View Article and Find Full Text PDF