Introduction: Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity worldwide. However, current methods of screening are complicated and require special skill sets. In this observational study of prospectively collected samples, we wanted to evaluate if cell-free () DNA could be an efficient biomarker for identification of at-risk patients.
View Article and Find Full Text PDFPurpose: Pregnant women have unprecedented choices for prenatal screening and testing. Cell-free DNA (cfDNA) offers the option to screen for aneuploidy of all chromosomes and genome-wide copy-number variants (CNVs), expanding screening beyond the common trisomies ("traditional" cfDNA). We sought to review the utilization trends and clinical performance characteristics of a commercially available genome-wide cfDNA test, with a subset having available diagnostic testing outcomes.
View Article and Find Full Text PDFWith the increasing capabilities of non-invasive prenatal testing (NIPT), detection of sub-chromosomal deletions and duplications are possible. This case series of deletion rescues resulting in segmental homozygosity helps provide a biological explanation for NIPT discrepancies and adds to the dearth of existing literature surrounding segmental UPD cases and their underlying mechanisms. In the three cases presented here, NIPT reported a sub-chromosomal deletion (in isolation or as part of a complex finding).
View Article and Find Full Text PDFObjective: Outcome data from cell-free DNA (cfDNA) screening in twin gestations are limited. This study adds an appreciable number of confirmed outcomes to the literature, and assesses performance of cfDNA screening in twins over a 4.5-year period at one large clinical laboratory.
View Article and Find Full Text PDFMore and more women rely on non-invasive prenatal screening (NIPS) to detect fetal sex and risk for aneuploidy. The testing applies massively parallel sequencing or single nucleotide polymorphism (SNP) microarray to circulating cell-free DNA to determine relative copy number. In addition to trisomies 13, 18, and 21, some labs offer screening for sex chromosome abnormalities as part of their test.
View Article and Find Full Text PDFSince introducing cell-free DNA screening, Sequenom Laboratories has analyzed over 1 million clinical samples. More than 30,000 of these samples were from multifetal gestations (including twins, triplets and higher-order multiples). The clinical laboratory experience with the first 30,000 multifetal samples will be discussed.
View Article and Find Full Text PDFPurposeInvasive diagnostic prenatal testing can provide the most comprehensive information about the genetic status of a fetus. Noninvasive prenatal screening methods, especially when using cell-free DNA (cfDNA), are often limited to reporting only on trisomies 21, 18, and 13 and sex chromosome aneuploidies. This can leave a significant number of chromosomal and subchromosomal copy-number variations undetected.
View Article and Find Full Text PDF