Publications by authors named "Theresa Ames"

Background: Cigarette smoking is associated with increased frequency and duration of viral respiratory infections, but the underlying mechanisms are incompletely defined. We investigated whether smoking reduces expression by human lung macrophages (Mø) of receptors for viral nucleic acids and, if so, the effect on CXCL10 production.

Methods: We collected alveolar macrophages (AMø) by bronchoalveolar lavage of radiographically-normal lungs of subjects undergoing bronchoscopies for solitary nodules (n = 16) and of volunteers who were current or former smokers (n = 7) or never-smokers (n = 13).

View Article and Find Full Text PDF

The lung environment actively inhibits apoptotic cell (AC) uptake by alveolar macrophages (AMøs) via lung collectin signaling through signal regulatory protein α (SIRPα). Even brief glucocorticoid (GC) treatment during maturation of human blood monocyte-derived or murine bone marrow-derived macrophages (Møs) increases their AC uptake. Whether GCs similarly impact differentiated tissue Møs and the mechanisms for this rapid response are unknown and important to define, given the widespread therapeutic use of inhaled GCs.

View Article and Find Full Text PDF

Lung CD8(+) T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8(+) T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand.

View Article and Find Full Text PDF

Rationale: Dendritic cells (DCs) have not been well studied in chronic obstructive pulmonary disease (COPD), yet their integral role in activating and differentiating T cells makes them potential participants in COPD pathogenesis.

Objectives: To determine the expression of maturation molecules by individual DC subsets in relationship to COPD stage and to expression of the acute activation marker CD69 by lung CD4(+) T cells.

Methods: We nonenzymatically released lung leukocytes from human surgical specimens (n = 42) and used flow cytometry to identify three DC subsets (mDC1, mDC2, and pDC) and to measure their expression of three costimulatory molecules (CD40, CD80 and CD86) and of CD83, the definitive marker of DC maturation.

View Article and Find Full Text PDF

Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. CCR2-deficient mice infected with C. neoformans develop a non-protective T2 immune response and persistent infection.

View Article and Find Full Text PDF

Dendritic cells (DC) migrate from sites of inflammation to lymph nodes to initiate primary immune responses, but the molecular mechanisms by which DC are replenished in the lungs during ongoing pulmonary inflammation are unknown. To address this question, we analyzed the secondary pulmonary immune response of Ag-primed mice to intratracheal challenge with the particulate T cell-dependent Ag sheep erythrocytes (SRBC). We studied wild-type C57BL/6 mice and syngeneic gene-targeted mice lacking either both endothelial selectins (CD62E and CD62P), or the chemokine receptors CCR2 or CCR6.

View Article and Find Full Text PDF