In reaction centers from Rhodobacter sphaeroides exposed to continuous illumination in the presence of an inhibitor of the Q(A)(-) to Q(B) electron transfer, a semi-stable, charge-separated state was formed with halftimes of formation and decay of several minutes. When the non-heme iron was replaced by Cu(2+), the decay of the semi-stable, charge-separated state became much slower than in centers with bound Fe(2+) with about the same rate constant for formation. In Cu(2+)-substituted reaction centers, the semi-stable state was associated with an EPR signal, significantly different from that observed after chemical reduction of the acceptor-side quinone or after illumination at low temperature, but similar to that of an isolated Cu(2+) in the absence of magnetic interaction.
View Article and Find Full Text PDF