To date, no curative therapy is available for the treatment of most chronic inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, or autoimmune disorders. Current treatments require a lifetime supply for patients to alleviate clinical symptoms and are unable to stop the course of disease. In contrast, a new series of immunotherapeutic agents targeting the Fc γ receptor I (CD64) have emerged and demonstrated significant clinical potential to actually resolving chronic inflammation driven by M1-type dysregulated macrophages.
View Article and Find Full Text PDFFc gamma receptor I (FcγRI, CD64) is a well-known target antigen for passive immunotherapy against acute myeloid leukemia and chronic myelomonocytic leukemia. We recently reported the preclinical immunotherapeutic potential of microtubule associated protein tau (MAP) against a variety of cancer types including breast carcinoma and Hodgkin's lymphoma. Here we demonstrate that the CD64-directed human cytolytic fusion protein H22(scFv)-MAP kills ex vivo 15-50% of CD64+ leukemic blasts derived from seven myeloid leukemia patients.
View Article and Find Full Text PDFChondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype.
View Article and Find Full Text PDFClassical immunotoxins compromise a binding component (for example, a ligand, antibody or fragment thereof) and a cytotoxic component, usually derived from bacteria or plants (for example, Pseudomonas exotoxin A or ricin). Despite successful testing in vitro, the clinical development of immunotoxins has been hampered by immunogenicity and unsatisfactory safety profiles. Therefore, research has focused on fully human pro-apoptotic components suitable for the development of cytolytic fusion proteins (CFP).
View Article and Find Full Text PDFMacrophages are key players in controlling the immune response that can adapt to microenvironmental signals. This results in distinct polarization states (classical M1 or alternative M2), that play a differential role in immune regulation. In general, the M1 contribute to onset of inflammation, whereas the M2 orchestrate resolution and repair, whereby failure to switch from predominantly M1 to M2 reinforces a pro-inflammatory environment and chronic inflammation.
View Article and Find Full Text PDFAntibody-based immunotherapy of leukemia requires the targeting of specific antigens on the surface of blasts. The Fc gamma receptor (CD64) has been investigated in detail, and CD64-targeting immunotherapy has shown promising efficacy in the targeted ablation of acute myeloid leukemia (AML), acute myelomonocytic leukemia (AMML) and chronic myeloid leukemia cells (CML). Here we investigate for the first time the potential of FcαRI (CD89) as a new target antigen expressed by different myeloid leukemic cell populations.
View Article and Find Full Text PDFTumor necrosis factor (TNF) is a pro-inflammatory cytokine that plays a critical role in many inflammatory diseases. Soluble TNF can be neutralized by monoclonal antibodies (mAbs), and this is a widely-used therapeutic approach. However, some patients do not respond to anti-TNF therapy due to the increased expression of CD64 on monocytes and macrophages.
View Article and Find Full Text PDFIn normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy.
View Article and Find Full Text PDFCMML (chronic myelomonocytic leukemia) belongs to the group of myeloid neoplasms known as myelodysplastic and myeloproliferative diseases. In some patients with a history of CMML, the disease transforms to acute myelomonocytic leukemia (AMML). There are no specific treatment options for patients suffering from CMML except for supportive care and DNA methyltransferase inhibitors in patients with advanced disease.
View Article and Find Full Text PDFHodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (sALCL) are rare lymphoproliferative cancer types. Although most HL patients can be cured by chemo- and radio-therapy, 4-50% of patients relapse and have a poor prognosis. The need for improved therapeutic options for patients with relapsed or refractory disease has been addressed by CD30-specific antibody-based immunotherapeutics.
View Article and Find Full Text PDFImmunotoxins are promising targeted therapeutic agents comprising an antibody-based ligand that specifically binds to diseased cells, and a pro-apoptotic protein. Toxic components from bacteria or plants can trigger a neutralizing immune response, so that human effector molecules are more suitable. In this context, the protease granzyme B has been successfully tested in cytotoxicity assays against different cancer cells in vitro and in vivo.
View Article and Find Full Text PDFBackground: Antibody drug conjugates (ADCs) and immunotoxins (ITs) are promising anticancer immunotherapeutics. Despite their encouraging performance in clinical trials, both ADCs and ITs often suffer from disadvantages such as stoichiometrically undefined chemical linkage of the cytotoxic payload (ADCs) and the potential immunogenicity of toxins derived from bacteria and plants (ITs).
Methods: Human microtubule-associated protein tau (MAP) was cloned in-frame with human EGF, expressed in E.
Tumors develop when infiltrating immune cells contribute growth stimuli, and cancer cells are selected to survive within such a cytotoxic microenvironment. One possible immune-escape mechanism is the upregulation of PI-9 (Serpin B9) within cancer cells. This serine proteinase inhibitor selectively inactivates apoptosis-inducing granzyme B (GrB) from cytotoxic granules of innate immune cells.
View Article and Find Full Text PDFDiseases caused by chronic inflammation (e.g., arthritis, multiple sclerosis and diabetic ulcers) are multicausal, thus making treatment difficult and inefficient.
View Article and Find Full Text PDFIn vivo optical Imaging is an inexpensive and highly sensitive modality to investigate and follow up diseases like breast cancer. However, fluorescence labels and specific tracers are still works in progress to bring this promising modality into the clinical day-to-day use. In this study an anti-MUC-1 binding single-chain antibody fragment was screened, produced and afterwards labeled with newly designed and surface modified NaYF(4):Yb,Er upconversion nanoparticles as fluorescence reporter constructs.
View Article and Find Full Text PDFBackground: Macrophages are major effectors of the local inflammatory response syndrome (LIRS) and influence the extent of ischaemia/reperfusion injury, thereby impacting organ function. Several subgroups of macrophages exist, representing distinct modes of action. The specific role of the subset expressing Fc gamma receptor (FcγR) 1 in the activated state of macrophages is poorly defined.
View Article and Find Full Text PDFPurpose: Preclinical in vivo analyses of treatment responses are an important prerequisite to evaluate new therapeutics. Molecular in vivo imaging in the far red (FR)/near infra red (NIR) is a promising method, as it enables measurements at different time points in individual animals, thereby reducing the number of animals required, while increasing statistical significance. Here, we show the establishment of a method to monitor response to treatment using fluorescent cells, expressing the epidermal growth factor receptor (EGFR), a target already used in therapy.
View Article and Find Full Text PDFBone Marrow Transplant
December 2011
GVHD remains a major problem in allo-SCT. We explored the presence of APC in skin biopsies of GVHD patients, using the IgG receptor CD64 expression as a hallmark for activated APC. By immunohistochemistry we demonstrated CD64 to be upregulated on host APC in skin biopsies of patients with acute GVHD and, less prominently, in chronic GVHD.
View Article and Find Full Text PDFTarget-specific acute myeloid leukemia (AML) immunotherapy requires selective cell-surface antigens on AML blast cells. CD64 is a promising candidate antigen because it is abundantly expressed on monocytoid differentiated AML subtypes. In previous studies, a chemically linked full-length anti-CD64 immunotoxin based on ricin A showed promising results in several animal models, but further development has been hindered by its substantial, dose-limiting off-target effects.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
October 2010
Purpose: The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression.
Methods: Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine.
Background: Dysregulated, activated macrophages play a pivotal role in chronic inflammatory diseases such as arthritis and atopic dermatitis. These cells display increased expression of the high-affinity Fcgamma receptor (CD64), making them ideal targets for CD64-specific immunotoxins. We previously showed that a chemically linked immunotoxin, the monoclonal H22-RicinA, specifically eliminated infiltrating activated macrophages and resolved chronic cutaneous inflammation.
View Article and Find Full Text PDFImmunotoxins are powerful tools to specifically eliminate deviated cells. Due to the side effects of the original immunotoxins, they were only considered for the treatment of cancer as in these cases, the potential favourable effect outweighed the unwanted toxic side effects. Over time, many improvements in the construction of immunotoxins have been implemented that circumvent, or at least strongly diminish, the side effects.
View Article and Find Full Text PDF