Publications by authors named "Thepaut M"

DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently.

View Article and Find Full Text PDF

Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade.

View Article and Find Full Text PDF

NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood.

View Article and Find Full Text PDF

The evaluation of mpk (BVMPK) lipopolysaccharide (LPS) recognition by DC-SIGN, a key lectin in mediating immune homeostasis, has been here performed. A fine chemical dissection of BVMPK LPS components, attained by synthetic chemistry combined to spectroscopic, biophysical, and computational techniques, allowed to finely map the LPS epitopes recognized by DC-SIGN. Our findings reveal BVMPK's role in immune modulation via DC-SIGN, targeting both the LPS O-antigen and the core oligosaccharide.

View Article and Find Full Text PDF

(1) Aim: The aim of this study was to determine the relationship between lower limb bone deformities and body functions, activity, and participation in ambulant children with CP and whether changing bone morphology affects outcomes in these domains. (2) Methods: A systematic literature search (PROSPERO CRD42020208416) of studies reporting correlations between measures of lower limb bone deformities and measures of body function, activity or participation, or post-surgical outcomes in these domains was conducted from 1990 to 2023 in Medline, Scopus, and Cochrane Library. We assessed study quality with the Checklist for Case Series (CCS) and a quality assessment developed by Quebec University Hospital.

View Article and Find Full Text PDF

Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN).

View Article and Find Full Text PDF

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood.

View Article and Find Full Text PDF

Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction.

View Article and Find Full Text PDF

The "carbohydrate chemical mimicry" exhibited by sp -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man and Man . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques.

View Article and Find Full Text PDF

Lipopolysaccharides are a hallmark of gram-negative bacteria, and their presence at the cell surface is key for bacterial integrity. As surface-exposed components, they are recognized by immunity C-type lectin receptors present on antigen-presenting cells. Human macrophage galactose lectin binds surface that presents a specific glycan motif.

View Article and Find Full Text PDF

To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR).

View Article and Find Full Text PDF

Over 90% of epidemic non-bacterial gastroenteritis are caused by human noroviruses (NoVs), which persist in a substantial subset of people allowing their spread worldwide. This has led to a significant number of endemic cases and up to 70,000 children deaths in developing countries. NoVs are primarily transmitted through the fecal-oral route.

View Article and Find Full Text PDF

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function.

View Article and Find Full Text PDF

The C-type lectin receptor DC-SIGN has been highlighted as the coreceptor for the spike protein of the SARS-CoV-2 virus. A multivalent glycomimetic ligand, Polyman26, has been found to inhibit DC-SIGN-dependent trans-infection of SARS-CoV-2. The molecular details underlying avidity generation in such systems remain poorly characterized.

View Article and Find Full Text PDF

Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity.

View Article and Find Full Text PDF

Virus-like particles constitute versatile vectors that can be used as vaccine platforms in many fields from infectiology and more recently to oncology. We previously designed non-infectious adenovirus-inspired 60-mer dodecahedric virus-like particles named ADDomers displaying on their surface either a short epitope or a large tumor/viral antigen. In this work, we explored for the first time the immunogenicity of ADDomers exhibiting melanoma-derived tumor antigen/epitope and their impact on the features of human dendritic cell (DC) subsets.

View Article and Find Full Text PDF

The molecular recognition features of LSECtin toward asymmetric N-glycans have been scrutinized by NMR and compared to those occurring in glycan microarrays. A pair of positional glycan isomers (LDN3 and LDN6), a nonelongated GlcNAc4Man3 N-glycan (G0), and the minimum binding epitope (the GlcNAcβ1-2Man disaccharide) have been used to shed light on the preferred binding modes under both experimental conditions. Strikingly, both asymmetric LDN3 and LDN6 N-glycans are recognized by LSECtin with similar affinities in solution, in sharp contrast to the results obtained when those glycans are presented on microarrays, where only LDN6 was efficiently recognized by the lectin.

View Article and Find Full Text PDF

Selective DC-SIGN targeting . langerin might lead to anti-infective agents, given their counteracting effects upon infection by some pathogens. Here we show that multivalent sp-iminosugar-containing mannobioside analogs can achieve total DC-SIGN selectivity by levering the canonic binding mode towards high-mannose oligosaccharide ligands, behaving as factual biomimics.

View Article and Find Full Text PDF

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain.

View Article and Find Full Text PDF

The C-type lectin receptors DC-SIGN and L-SIGN bind to glycans on the SARS-CoV-2 spike glycoprotein and promote trans-infection of ACE2-expressing cells. We tested C2 triazole-modified mono- and pseudo-di-mannosides as inhibitors of DC/L-SIGN binding to a model mannosylated protein (Man-BSA) and to SARS-CoV2 spike, finding that they inhibit the interaction of both lectins with the spike glycoprotein in a Surface Plasmon Resonance (SPR) assay and are more potent than mannose by up to 36-fold (DC-SIGN) and 10-fold (L-SIGN). The molecules described here are the first known glycomimetic ligands of L-SIGN.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation.

View Article and Find Full Text PDF

Background: Spinal osteochondroma (or exostosis) is a rare benign tumour whose clinical manifestations are delayed due to their slow growth and location. Few studies have addressed the characteristics and the diagnostic and therapeutic peculiarities of spinal osteochondroma in children. The objective of this multicentre observational study was to assess the outcomes of a cohort of children after surgery for spinal osteochondroma.

View Article and Find Full Text PDF

Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of -glycans reveals the Thomsen nouveau (Tn) antigen, an -acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells.

View Article and Find Full Text PDF

Background: Medical and surgical interventions to prevent or reduce bone deformities and improve gait in children with cerebral palsy (CP) are based on empirical evidence that there is a relationship between bone deformities and gait deviations.

Research Question: What is the relationship between tibial-femoral bone morphology and kinematic gait variables in ambulant children with CP?

Methods: A retrospective analysis was conducted on data from 121 children with uni- (n = 64, mean age 9.9 (SD 3.

View Article and Find Full Text PDF
Article Synopsis
  • Current research indicates that both genetic and environmental factors significantly increase the risk of developing schizophrenia, particularly during critical developmental stages like prenatal development and adolescence.
  • The article highlights various epidemiological studies, such as family and twin studies, that support the genetic basis of schizophrenia, along with a review of genetic disorders linked to the condition.
  • The findings emphasize the importance of early detection through clinical genetic assessments to identify neurodevelopmental abnormalities and improve prevention, diagnosis, and treatment strategies for those at high risk for schizophrenia.
View Article and Find Full Text PDF